Open Access
ARTICLE
Buck Converter Current Measurement Using Differential Amplifier
Department of Electrical and Electronics Engineering, Coimbatore Institute of Technology, Coimbatore, 641014, India
* Corresponding Author: P. Rajeswari. Email:
Intelligent Automation & Soft Computing 2023, 35(2), 1387-1402. https://doi.org/10.32604/iasc.2023.025866
Received 07 December 2021; Accepted 18 January 2022; Issue published 19 July 2022
Abstract
The accuracy of the measured current is a preeminent parameter for Current Control based Power Converter applications to ensure genuine operation of the designed converter. The current measurement accuracy can be affected by several parameters which includes the type of technology used, components used for the selected technology, aging, usage, operating and environmental conditions. The effect of gain resistors and their manufacturing tolerances on differential amplifier-based buck converter current measurement is investigated in this work. The analysis mainly focused on the output voltage variation and its accuracy with respect to the change in gain resistance tolerances. The gain resistors with 5%, 1%, 0.5% and 0.1% manufacturing tolerances taken for the worst-case analysis and the calculated performance results are compared and verified with the simulation results. The Operational amplifiers (Op-Amp) for high frequency power converter applications must operate in a high frequency noise environment and the intended current measuring system must manage common mode noise disturbances paired with the signal to be measured. Based on the Common Mode Rejection Ratio (CMRR) the common mode voltages and noise signals will effectively get filtered out. Lesser CMRR results in lower common mode signal rejection, resulting in poor precision and noise rejection. In differential amplifiers, the CMRR predominantly depends on gain resistors. So, the variations in Common Mode Rejection Ratio due to gain resistor tolerances also analyzed and compared with the output voltage variations. Besides the effects of resistor tolerances, this paper also examines the effect of Op-Amp offset voltage on output accuracy specifically for low magnitude input currents. The obtained results from this analysis clearly shows that the gain resistors with 0.1% tolerance gives maximum accuracy with improved CMRR and accuracy at low magnitude input currents will get well improved by using Op-Amps with Low Offset voltage specifications.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.