Open Access
ARTICLE
Enhanced Sentiment Analysis Algorithms for Multi-Weight Polarity Selection on Twitter Dataset
College of Computer and Information Sciences, Jouf University, Sakaka, 72314, Saudi Arabia
* Corresponding Author: Ayman Mohamed Mostafa. Email:
Intelligent Automation & Soft Computing 2023, 35(1), 1015-1034. https://doi.org/10.32604/iasc.2023.028041
Received 31 January 2022; Accepted 20 March 2022; Issue published 06 June 2022
Abstract
Sentiment analysis is based on the orientation of user attitudes and satisfaction towards services and subjects. Different methods and techniques have been introduced to analyze sentiments for obtaining high accuracy. The sentiment analysis accuracy depends mainly on supervised and unsupervised mechanisms. Supervised mechanisms are based on machine learning algorithms that achieve moderate or high accuracy but the manual annotation of data is considered a time-consuming process. In unsupervised mechanisms, a lexicon is constructed for storing polarity terms. The accuracy of analyzing data is considered moderate or low if the lexicon contains small terms. In addition, most research methodologies analyze datasets using only 3-weight polarity that can mainly affect the performance of the analysis process. Applying both methods for obtaining high accuracy and efficiency with low user intervention during the analysis process is considered a challenging process. This paper provides a comprehensive evaluation of polarity weights and mechanisms for recent sentiment analysis research. A semi-supervised framework is applied for processing data using both lexicon and machine learning algorithms. An interactive sentiment analysis algorithm is proposed for distributing multi-weight polarities on Arabic lexicons that contain high morphological and linguistic terms. An enhanced scaling algorithm is embedded in the multi-weight algorithm to assign recommended weight polarities automatically. The experimental results are conducted on two datasets to measure the overall accuracy of proposed algorithms that achieved high results when compared to machine learning algorithms.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.