Open Access iconOpen Access

ARTICLE

crossmark

Efficient Medical Image Encryption Framework against Occlusion Attack

May A. Al-Otaibi1,*, Hesham Alhumyani1, Saleh Ibrahim2, Alaa M. Abbas2

1 Department of Computer Engineering, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
2 Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

* Corresponding Author: May A. Al-Otaibi. Email: email

Intelligent Automation & Soft Computing 2022, 34(3), 1523-1536. https://doi.org/10.32604/iasc.2022.026161

Abstract

Image encryption has attracted a lot of interest as an important security application for protecting confidential image data against unauthorized access. An adversary with the power to manipulate cipher image data can crop part of the image out to prevent decryption or render the decrypted image useless. This is known as the occlusion attack. In this paper, we address a vulnerability to the occlusion attack identified in the medical image encryption framework recently proposed in []. We propose adding a pixel scrambling phase to the framework and show through simulation that the extended framework effectively mitigates the occlusion attack while maintaining the other attractive security features. The scrambling is performed using a separate chaotic map which is securely initialized using a secret key and a random nonce to deter chosen-plaintext attacks. Moreover, we show through simulation that the choice of chaotic map used for scrambling is irrelevant to the effectiveness of the scrambling algorithm against the occlusion attack.

Keywords


Cite This Article

APA Style
Al-Otaibi, M.A., Alhumyani, H., Ibrahim, S., Abbas, A.M. (2022). Efficient medical image encryption framework against occlusion attack. Intelligent Automation & Soft Computing, 34(3), 1523-1536. https://doi.org/10.32604/iasc.2022.026161
Vancouver Style
Al-Otaibi MA, Alhumyani H, Ibrahim S, Abbas AM. Efficient medical image encryption framework against occlusion attack. Intell Automat Soft Comput . 2022;34(3):1523-1536 https://doi.org/10.32604/iasc.2022.026161
IEEE Style
M.A. Al-Otaibi, H. Alhumyani, S. Ibrahim, and A.M. Abbas, “Efficient Medical Image Encryption Framework against Occlusion Attack,” Intell. Automat. Soft Comput. , vol. 34, no. 3, pp. 1523-1536, 2022. https://doi.org/10.32604/iasc.2022.026161



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1283

    View

  • 602

    Download

  • 0

    Like

Share Link