Open Access iconOpen Access

ARTICLE

crossmark

Optimized Fuzzy Enabled Semi-Supervised Intrusion Detection System for Attack Prediction

by Gautham Praveen Ramalingam1, R. Arockia Xavier Annie1, Shobana Gopalakrishnan2,*

1 Department of Computer Science and Engineering, CEG, Anna University, Chennai, 600025, India
2 Department of Information Technology, Loyola ICAM College of Engineering and Technology, Chennai, 600034, India

* Corresponding Author: Shobana Gopalakrishnan. Email: email

Intelligent Automation & Soft Computing 2022, 32(3), 1479-1492. https://doi.org/10.32604/iasc.2022.022211

Abstract

Detection of intrusion plays an important part in data protection. Intruders will carry out attacks from a compromised user account without being identified. The key technology is the effective detection of sundry threats inside the network. However, process automation is experiencing expanded use of information communication systems, due to high versatility of interoperability and ease off 34 administration. Traditional knowledge technology intrusion detection systems are not completely tailored to process automation. The combined use of fuzziness-based and RNN-IDS is therefore highly suited to high-precision classification, and its efficiency is better compared to that of conventional machine learning approaches. This model increases the accuracy of intrusion detection using Machine Learning Methodologies and fuzziness has been used to identify various categories of hazards, and a machine learning approach has been used to prevent intrusions. As a result, the hypothesis of security breaches is often observed by tracking system audit reports for suspicious trends of system use, and access controls for granting or limiting the degree of access to the network are often established as the result of an improvement in the detection accuracy of intrusions which is extremely effective.

Keywords


Cite This Article

APA Style
Ramalingam, G.P., Annie, R.A.X., Gopalakrishnan, S. (2022). Optimized fuzzy enabled semi-supervised intrusion detection system for attack prediction. Intelligent Automation & Soft Computing, 32(3), 1479–1492. https://doi.org/10.32604/iasc.2022.022211
Vancouver Style
Ramalingam GP, Annie RAX, Gopalakrishnan S. Optimized fuzzy enabled semi-supervised intrusion detection system for attack prediction. Intell Automat Soft Comput. 2022;32(3):1479–1492. https://doi.org/10.32604/iasc.2022.022211
IEEE Style
G. P. Ramalingam, R. A. X. Annie, and S. Gopalakrishnan, “Optimized Fuzzy Enabled Semi-Supervised Intrusion Detection System for Attack Prediction,” Intell. Automat. Soft Comput., vol. 32, no. 3, pp. 1479–1492, 2022. https://doi.org/10.32604/iasc.2022.022211



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1936

    View

  • 1080

    Download

  • 0

    Like

Share Link