Open Access iconOpen Access

ARTICLE

crossmark

Bayesian Approximation Techniques for the Generalized Inverted Exponential Distribution

Rana A. Bakoban, Maha A. Aldahlan*

Department of Statistics, College of Science, University of Jeddah, Jeddah, Saudi Arabia

* Corresponding Author: Maha A. Aldahlan. Email: email

Intelligent Automation & Soft Computing 2022, 31(1), 129-142. https://doi.org/10.32604/iasc.2022.018041

Abstract

In this article, Bayesian techniques are adopted to estimate the shape parameter of the generalized inverted exponential distribution (GIED) in the case of complete samples. Normal approximation, Lindley’s approximation, and Tierney and Kadane’s approximation are used for deriving Bayesian estimators. Different informative priors are considered, such as Jeffrey’s prior, Quasi prior, modified Jeffrey’s prior, and the extension of Jeffrey’s prior. Non-informative priors are also used, including Gamma prior, Pareto prior, and inverse Levy prior. The Bayesian estimators are derived under the quadratic loss function. Monte Carlo simulations are carried out to make a comparison among estimators based on the mean square error of the estimates. All estimators using normal, Lindley’s, and Tierney and Kadane’s approximation techniques perform consistently since the MSE decreases as the sample size increases. For large samples, estimators based on non-informative priors using normal approximation are usually better than the ones using Lindley’s approximation. Two real data sets in reliability and medicine are applling to the GIED distribution to assess its flexibility. By comparing the estimation results with other generalized models, we prove that estimating this model using Bayesian approximation techniques gives good results for investigating estimation problems. The models compared in this research are generalized inverse Weibull distribution (GIWD), inverse Weibull distribution (IWD), and inverse exponential distribution (IED).

Keywords


Cite This Article

APA Style
Bakoban, R.A., Aldahlan, M.A. (2022). Bayesian approximation techniques for the generalized inverted exponential distribution. Intelligent Automation & Soft Computing, 31(1), 129-142. https://doi.org/10.32604/iasc.2022.018041
Vancouver Style
Bakoban RA, Aldahlan MA. Bayesian approximation techniques for the generalized inverted exponential distribution. Intell Automat Soft Comput . 2022;31(1):129-142 https://doi.org/10.32604/iasc.2022.018041
IEEE Style
R.A. Bakoban and M.A. Aldahlan, “Bayesian Approximation Techniques for the Generalized Inverted Exponential Distribution,” Intell. Automat. Soft Comput. , vol. 31, no. 1, pp. 129-142, 2022. https://doi.org/10.32604/iasc.2022.018041



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1795

    View

  • 1158

    Download

  • 0

    Like

Share Link