Table of Content

Open Access iconOpen Access

ARTICLE

crossmark

A Perspective of the Machine Learning Approach for the Packet Classification in the Software Defined Network

by B. Indira, K. Valarmathi

1 Department of Computer Science and Engineering, P.S.R. Engineering College, Sivakasi-626 140
2 Department of Electronics and Communication Engineering, P.S.R. Engineering College, Sivakasi-626 140

* Corresponding Author: B. Indira, email

Intelligent Automation & Soft Computing 2020, 26(4), 795-805. https://doi.org/10.32604/iasc.2020.010114

Abstract

Packet classification is a major bottleneck in Software Defined Network (SDN). Each packet has to be classified based on the action specified in each rule in the given flow table. To perform classification, the system requires much of the CPU clock time. Therefore, developing an efficient packet classification algorithm is critical for high speed inter networking. Existing works make use of exact matching, range matching and longest prefix matching for classification and these techniques sometime enlarges rule databases, thus resulting in huge memory consumption and inefficient searching performance. In order to select an efficient packet classification algorithm with less memory consumption and high classification accuracy, Machine Learning (ML) algorithms are used. For performance comparison, ML algorithms are used, namely Multi-layer Perceptron (MLP), K-Nearest Neighbor (KNN), Decision Tree (DT), Random Forest (RF), AdaBoost classifier (AB) and Support Vector Machine (SVM). All these algorithms build network for packet classification and train the network with the use of Access Control List (ACL) netbench dataset. 5-features of IPv4 packet header are used and the algorithms classify the packets based on action/flow of each packet. Experimental results show that among six algorithms, RF algorithm gives better improvement in accuracyperformance for permitted packets.

Keywords


Cite This Article

APA Style
Indira, B., Valarmathi, K. (2020). A perspective of the machine learning approach for the packet classification in the software defined network. Intelligent Automation & Soft Computing, 26(4), 795-805. https://doi.org/10.32604/iasc.2020.010114
Vancouver Style
Indira B, Valarmathi K. A perspective of the machine learning approach for the packet classification in the software defined network. Intell Automat Soft Comput . 2020;26(4):795-805 https://doi.org/10.32604/iasc.2020.010114
IEEE Style
B. Indira and K. Valarmathi, “A Perspective of the Machine Learning Approach for the Packet Classification in the Software Defined Network,” Intell. Automat. Soft Comput. , vol. 26, no. 4, pp. 795-805, 2020. https://doi.org/10.32604/iasc.2020.010114

Citations




cc Copyright © 2020 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 3024

    View

  • 1471

    Download

  • 2

    Like

Share Link