Table of Content

Open Access iconOpen Access

ARTICLE

crossmark

Reducing Operational Time Complexity of k-NN Algorithms Using Clustering in Wrist-Activity Recognition

by Sun-Taag Choe, We-Duke Cho, Jai-Hoon Kim, and Ki-Hyung Kim

Graduate School of Electrical and Computer Engineering, Ajou University
Suwon 443-749, Republic of Korea

* Corresponding Author: We-Duke Cho, email

Intelligent Automation & Soft Computing 2020, 26(4), 679-691. https://doi.org/10.32604/iasc.2020.010102

Abstract

Recent research on activity recognition in wearable devices has identified a key challenge: k-nearest neighbors (k-NN) algorithms have a high operational time complexity. Thus, these algorithms are difficult to utilize in embedded wearable devices. Herein, we propose a method for reducing this complexity. We apply a clustering algorithm for learning data and assign labels to each cluster according to the maximum likelihood. Experimental results show that the proposed method achieves effective operational levels for implementation in embedded devices; however, the accuracy is slightly lower than that of a traditional k-NN algorithm. Additionally, our method provides the advantage of controlling the computational burden, depending on the performance of the embedded device on which the algorithm is implemented.

Keywords


Cite This Article

APA Style
Choe, S., Cho, W., Kim, J., Ki-Hyung Kim, A. (2020). Reducing operational time complexity of k-nn algorithms using clustering in wrist-activity recognition. Intelligent Automation & Soft Computing, 26(4), 679-691. https://doi.org/10.32604/iasc.2020.010102
Vancouver Style
Choe S, Cho W, Kim J, Ki-Hyung Kim A. Reducing operational time complexity of k-nn algorithms using clustering in wrist-activity recognition. Intell Automat Soft Comput . 2020;26(4):679-691 https://doi.org/10.32604/iasc.2020.010102
IEEE Style
S. Choe, W. Cho, J. Kim, and A. Ki-Hyung Kim, “Reducing Operational Time Complexity of k-NN Algorithms Using Clustering in Wrist-Activity Recognition,” Intell. Automat. Soft Comput. , vol. 26, no. 4, pp. 679-691, 2020. https://doi.org/10.32604/iasc.2020.010102

Citations




cc Copyright © 2020 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2203

    View

  • 1458

    Download

  • 2

    Like

Share Link