Table of Content

Open Access iconOpen Access

ARTICLE

crossmark

Wind Turbine Drivetrain Expert Fault Detection System: Multivariate Empirical Mode Decomposition based Multi-sensor Fusion with Bayesian Learning Classification

by R. Uma Maheswari, R. Umamaheswari

1 Research Scholar, Anna University, Assistant Professor, Department of ECE, Rajalakshmi Institute of Technology, Chennai, India
2 Professor, Velammal Engineering College, Chennai, India

* Corresponding Author: R.Uma Maheswari, email

Intelligent Automation & Soft Computing 2020, 26(3), 479-488. https://doi.org/10.32604/iasc.2020.013924

Abstract

To enhance the predictive condition-based maintenance (CBMS), a reliable automatic Drivetrain fault detection technique based on vibration monitoring is proposed. Accelerometer sensors are mounted on a wind turbine drivetrain at different spatial locations to measure the vibration from multiple vibration sources. In this work, multi-channel signals are fused and monocomponent modes of oscillation are reconstructed by the Multivariate Empirical Mode Decomposition (MEMD) Technique. Noise assisted methodology is adapted to palliate the mixing of modes with common frequency scales. The instantaneous amplitude envelope and instantaneous frequency are estimated with the Hilbert transform. Low order and high order statistical moments, signal feature descriptors and randomness measures (entropy) are extracted as truthful features. The feature set is fed into the Bayes classifiers to compare the detection performance. From the analysis it is found that the proposed method is well performed with the Dynamic Bayes Belief Network Classifier showing the detection accuracy of 97.69%. To validate the results, the NRELWind Turbine Drivetrain benchmarking dataset is used.

Keywords


Cite This Article

APA Style
Uma Maheswari, R., Umamaheswari, R. (2020). Wind turbine drivetrain expert fault detection system: multivariate empirical mode decomposition based multi-sensor fusion with bayesian learning classification. Intelligent Automation & Soft Computing, 26(3), 479-488. https://doi.org/10.32604/iasc.2020.013924
Vancouver Style
Uma Maheswari R, Umamaheswari R. Wind turbine drivetrain expert fault detection system: multivariate empirical mode decomposition based multi-sensor fusion with bayesian learning classification. Intell Automat Soft Comput . 2020;26(3):479-488 https://doi.org/10.32604/iasc.2020.013924
IEEE Style
R. Uma Maheswari and R. Umamaheswari, “Wind Turbine Drivetrain Expert Fault Detection System: Multivariate Empirical Mode Decomposition based Multi-sensor Fusion with Bayesian Learning Classification,” Intell. Automat. Soft Comput. , vol. 26, no. 3, pp. 479-488, 2020. https://doi.org/10.32604/iasc.2020.013924

Citations




cc Copyright © 2020 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2374

    View

  • 1551

    Download

  • 1

    Like

Share Link