Table of Content

Open Access iconOpen Access

ARTICLE

crossmark

QRDPSO: A New Optimization Method for Swarm Robot Searching and Obstacle Avoidance in Dynamic Environments

by Mehiar, D.A.F., Azizul, Z.H., Loo, C.K.

Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia

* Corresponding Author: Azizul, Z.H., email

Intelligent Automation & Soft Computing 2020, 26(3), 447-454. https://doi.org/10.32604/iasc.2020.013921

Abstract

In this paper we show how the quantum-based particle swarm optimization (QPSO) method is adopted to derive a new derivation for robotics application in search and rescue simulations. The new derivation, called the Quantum Robot Darwinian PSO (QRDPSO) is inspired from another PSO-based algorithm, the Robot Darwinian PSO (RDPSO). This paper includes comprehensive details on the QRDPSO formulation and parameters control which show how the swarm overcomes communication constraints to avoid obstacles and achieve optimal solution. The results show the QRDPSO is an upgrade over RDPSO in terms of convergence speed, trajectory control, obstacle avoidance and connectivity performance of the swarm.

Keywords


Cite This Article

APA Style
Mehiar, , D.A.F., , Azizul, , Z.H., , Loo, et al. (2020). QRDPSO: A new optimization method for swarm robot searching and obstacle avoidance in dynamic environments. Intelligent Automation & Soft Computing, 26(3), 447-454. https://doi.org/10.32604/iasc.2020.013921
Vancouver Style
Mehiar , D.A.F. , Azizul , Z.H. , Loo , C.K. . QRDPSO: A new optimization method for swarm robot searching and obstacle avoidance in dynamic environments. Intell Automat Soft Comput . 2020;26(3):447-454 https://doi.org/10.32604/iasc.2020.013921
IEEE Style
Mehiar, D.A.F., Azizul, Z.H., Loo, and C.K., “QRDPSO: A New Optimization Method for Swarm Robot Searching and Obstacle Avoidance in Dynamic Environments,” Intell. Automat. Soft Comput. , vol. 26, no. 3, pp. 447-454, 2020. https://doi.org/10.32604/iasc.2020.013921



cc Copyright © 2020 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2226

    View

  • 1434

    Download

  • 0

    Like

Share Link