Table of Content

Open Access iconOpen Access

ARTICLE

State-Space Based Linear Modeling for Human Activity Recognition in Smart Space

by

1 Dept. of Electrical and Electronic Engineering, Islamic University, Kushtia, Bangladesh.
2 Dept. of Electronic Engineering, Kwangwoon University, Seoul, Republic of Korea.

* Corresponding Author: Sung-Hyun Yang, email

Intelligent Automation & Soft Computing 2019, 25(4), 673-681. https://doi.org/10.31209/2018.100000035

Abstract

Recognition of human activity is a key element for building intelligent and pervasive environments. Inhabitants interact with several objects and devices while performing any activity. Interactive objects and devices convey information that can be essential factors for activity recognition. Using embedded sensors with devices or objects, it is possible to get object-use sequencing data. This approach does not create discomfort to the user than wearable sensors and has no impact or issue in terms of user privacy than image sensors. In this paper, we propose a linear model for activity recognition based on the state-space method. The activities and sensor data are considered as states and inputs respectively for linear modeling. The relationship between the states and inputs are defined by a coefficient matrix. This model is flexible in terms of control because all the elements are represented by matrix elements. Three real datasets are used to compare the recognition accuracy of the proposed method to those of other well-known activity recognition model to validate the proposed model. The results indicate that the proposed model achieves a significantly better recognition performance than other models.

Keywords


Cite This Article

APA Style
Kabir, M.H., Thapa, K., Yang, J., Sung-HyunYang, (2019). State-space based linear modeling for human activity recognition in smart space. Intelligent Automation & Soft Computing, 25(4), 673-681. https://doi.org/10.31209/2018.100000035
Vancouver Style
Kabir MH, Thapa K, Yang J, Sung-HyunYang . State-space based linear modeling for human activity recognition in smart space. Intell Automat Soft Comput . 2019;25(4):673-681 https://doi.org/10.31209/2018.100000035
IEEE Style
M.H. Kabir, K. Thapa, J. Yang, and Sung-HyunYang, “State-Space Based Linear Modeling for Human Activity Recognition in Smart Space,” Intell. Automat. Soft Comput. , vol. 25, no. 4, pp. 673-681, 2019. https://doi.org/10.31209/2018.100000035



cc Copyright © 2019 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1997

    View

  • 1320

    Download

  • 0

    Like

Share Link