Table of Content

Open Access iconOpen Access

ARTICLE

Predicting Concentration of PM10 Using Optimal Parameters of Deep Neural Network

by

a School of Software, Hallym University, Chuncheon, Korea
b Bio-IT Research Center, Hallym University, Chuncheon, Korea

* Corresponding Author: Yu-Seop Kim, email

Intelligent Automation & Soft Computing 2019, 25(2), 343-350. https://doi.org/10.31209/2019.100000095

Abstract

Accurate prediction of fine dust (PM10) concentration is currently recognized as an important problem in East Asia. In this paper, we try to predict the concentration of PM10 using Deep Neural Network (DNN). Meteorological factors, yellow dust (sand), fog, and PM10 are used as input data. We test two cases. The first case predicts the concentration of PM10 on the next day using the day’s weather forecast data. The second case predicts the concentration of PM10 on the next day using the previous day’s data. Based on this, we compare the various performance results from the DNN model. In the experiments, we get about 76% of accuracy with the proposed system.

Keywords


Cite This Article

APA Style
Oh, B., Song, H., Kim, J., Park, C., Kim, Y. (2019). Predicting concentration of PM10 using optimal parameters of deep neural network. Intelligent Automation & Soft Computing, 25(2), 343-350. https://doi.org/10.31209/2019.100000095
Vancouver Style
Oh B, Song H, Kim J, Park C, Kim Y. Predicting concentration of PM10 using optimal parameters of deep neural network. Intell Automat Soft Comput . 2019;25(2):343-350 https://doi.org/10.31209/2019.100000095
IEEE Style
B. Oh, H. Song, J. Kim, C. Park, and Y. Kim, “Predicting Concentration of PM10 Using Optimal Parameters of Deep Neural Network,” Intell. Automat. Soft Comput. , vol. 25, no. 2, pp. 343-350, 2019. https://doi.org/10.31209/2019.100000095



cc Copyright © 2019 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1673

    View

  • 1072

    Download

  • 0

    Like

Share Link