@Article{10798587.2017.1302711,
AUTHOR = {Win-Chin Lin, Chin-Chi Wu, Kejin Yu, Yong-Hn Zhung, Shng-Chi Liu},
TITLE = {On the Use of Genetic Algorithm for Solving Re-entrant Flowshop Scheduling with Sum-of-processing-times-based Learning Effect to Minimize Total Tardiness},
JOURNAL = {Intelligent Automation \& Soft Computing},
VOLUME = {24},
YEAR = {2018},
NUMBER = {4},
PAGES = {671--681},
URL = {http://www.techscience.com/iasc/v24n4/39793},
ISSN = {2326-005X},
ABSTRACT = {Most research studies on scheduling problems assume that a job visits certain machines only one time.
However, this assumption is invalid in some real-life situations. For example, a job may be processed
by the same machine more than once in semiconductor wafer manufacturing or in a printed circuit
board manufacturing machine. Such a setting is known as the “re-entrant flowshop”. On the other
hand, the importance of learning effect present in many practical situations such as machine shop, in
different branches of industry and for a variety of corporate activities, in shortening life cycles, and in
an increasing diversity of products in the manufacturing environment. Inspired by these observations,
this paper addresses a re-entrant m-machine flowshop scheduling problems with time-dependent
learning effect to minimize the total tardiness. The complexity of the proposed problem is very difficult.
Therefore, in this paper we first present four heuristic algorithms, which are modified from existing
algorithms to solve the problem. Then, we use the solutions as four initials to a genetic algorithm.
Finally, we report experimental performances of all the proposed methods for the small and big
numbers of jobs, respectively},
DOI = {10.1080/10798587.2017.1302711}
}