Table of Content

Open Access iconOpen Access

ARTICLE

MRT-LBM SIMULATION OF NATURAL CONVECTION IN A RAYLEIGH-BENARD CAVITY WITH LINEARLY VARYING TEMPERATURES ON THE SIDES: APPLICATION TO A MICROPOLAR FLUID

A. El Mansouria,b, M. Hasnaouia,*, A. Amahmida , Y. Dahania , M. Alouaha , S. Hasnaouia , R. Khaoulaa , M. Ouahasa, R. Bennacerb

a UCA, Faculty of Sciences Semlalia, Physics Department, LMFE, Unit affiliated to CNRST (URAC 27), BP 2390, Marrakech, Morocco
b ENS-Cachan Dpt GC/LMT, 61, Av du Président Wilson 94235 Cachan Cedex France

* Corresponding Author: Email: email

Frontiers in Heat and Mass Transfer 2017, 9, 1-14. https://doi.org/10.5098/hmt.9.28

Abstract

A two-dimensional numerical simulation is conducted to study natural convection flow and heat transfer characteristics in a square cavity filled with a micropolar fluid. The lower and upper walls of the cavity are respectively subject to isothermal heating and cooling while the temperatures of both vertical sides decrease linearly in the upwards direction. The Lattice-Boltzmann Method (LBM), with the multi-relaxation time (MRT) scheme for the collision process, is used to solve the problem with the objective to assess the ability and efficiency of this numerical method to describe the micropolar fluid behavior under the effect of the imposed thermal boundary conditions. Computations are carried out for Rayleigh number, ܴܽ, and material parameter (vortex viscosity), K, varying respectively in the ranges 103Ra ≤ 106 and 0 ≤ K ≤ 2. Combined effects of these parameters on the multiplicity of solutions and critical values of ܴܽ from which transitions occur are investigated for Pr = 7. An increase of the material parameter K is shown to increase the critical Rayleigh numbers, which confirms the stabilizing effect of the micropolar fluid compared to the Newtonian case (K = 0). The study covers both steady and unsteady aspects of the problem under consideration. Initial perturbations play an important role in the cooling process of the hot bottom wall in the present configuration. The bicellular ascending and descending flows are two solutions mirror images of each other but they lead to very different quantities of heat from the bottom wall.

Keywords


Cite This Article

APA Style
Mansouri, A.E., Hasnaoui, M., Amahmid, A., Dahani, Y., Alouah, M. et al. (2017). MRT-LBM SIMULATION OF NATURAL CONVECTION IN A RAYLEIGH-BENARD CAVITY WITH LINEARLY VARYING TEMPERATURES ON THE SIDES: APPLICATION TO A MICROPOLAR FLUID. Frontiers in Heat and Mass Transfer, 9(1), 1-14. https://doi.org/10.5098/hmt.9.28
Vancouver Style
Mansouri AE, Hasnaoui M, Amahmid A, Dahani Y, Alouah M, Hasnaoui S, et al. MRT-LBM SIMULATION OF NATURAL CONVECTION IN A RAYLEIGH-BENARD CAVITY WITH LINEARLY VARYING TEMPERATURES ON THE SIDES: APPLICATION TO A MICROPOLAR FLUID. Front Heat Mass Transf. 2017;9(1):1-14 https://doi.org/10.5098/hmt.9.28
IEEE Style
A.E. Mansouri et al., “MRT-LBM SIMULATION OF NATURAL CONVECTION IN A RAYLEIGH-BENARD CAVITY WITH LINEARLY VARYING TEMPERATURES ON THE SIDES: APPLICATION TO A MICROPOLAR FLUID,” Front. Heat Mass Transf., vol. 9, no. 1, pp. 1-14, 2017. https://doi.org/10.5098/hmt.9.28



cc Copyright © 2017 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 434

    View

  • 270

    Download

  • 0

    Like

Share Link