Open Access iconOpen Access

ARTICLE

crossmark

Numerical Predictions of Laminar Forced Convection Heat Transfer with and without Buoyancy Effects from an Isothermal Horizontal Flat Plate to Supercritical Nitrogen

K. S. Rajendra Prasad1, Sathya Sai2, T. R. Seetharam3, Adithya Garimella1,*

1 Department of Mechanical and Industrial Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, 576104, India
2 Sustainable Energy Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, 2600 AA, Netherlands
3 Department of Mechanical Engineering, PES University, Bengaluru, 560085, India

* Corresponding Author: Adithya Garimella. Email: email

(This article belongs to the Special Issue: Computational and Numerical Advances in Heat Transfer: Models and Methods I)

Frontiers in Heat and Mass Transfer 2024, 22(3), 889-917. https://doi.org/10.32604/fhmt.2024.047703

Abstract

Numerical predictions are made for Laminar Forced convection heat transfer with and without buoyancy effects for Supercritical Nitrogen flowing over an isothermal horizontal flat plate with a heated surface facing downwards. Computations are performed by varying the value of from 5 to 30 K and ratio from 1.1 to 1.5. Variation of all the thermophysical properties of supercritical Nitrogen is considered. The wall temperatures are chosen in such a way that two values of T are less than is the temperature at which the fluid has a maximum value of C for the given pressure), one value equal to and two values greater than . Three different values of are used to obtain range of to for forced convection without buoyancy effects and range of 0.011 to 3.107 for the case where buoyancy effects are predominant. Six different forms of correlations are proposed based on numerical predictions and are compared with actual numerical predictions. It has been found that in all six forms of correlations, the maximum deviations are found to occur in those cases where the pseudocritical temperature TT lies between the wall temperature and bulk fluid temperature.

Keywords


Cite This Article

APA Style
Prasad, K.S.R., Sai, S., Seetharam, T.R., Garimella, A. (2024). Numerical predictions of laminar forced convection heat transfer with and without buoyancy effects from an isothermal horizontal flat plate to supercritical nitrogen. Frontiers in Heat and Mass Transfer, 22(3), 889-917. https://doi.org/10.32604/fhmt.2024.047703
Vancouver Style
Prasad KSR, Sai S, Seetharam TR, Garimella A. Numerical predictions of laminar forced convection heat transfer with and without buoyancy effects from an isothermal horizontal flat plate to supercritical nitrogen. Front Heat Mass Transf. 2024;22(3):889-917 https://doi.org/10.32604/fhmt.2024.047703
IEEE Style
K.S.R. Prasad, S. Sai, T.R. Seetharam, and A. Garimella, “Numerical Predictions of Laminar Forced Convection Heat Transfer with and without Buoyancy Effects from an Isothermal Horizontal Flat Plate to Supercritical Nitrogen,” Front. Heat Mass Transf., vol. 22, no. 3, pp. 889-917, 2024. https://doi.org/10.32604/fhmt.2024.047703



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 809

    View

  • 259

    Download

  • 0

    Like

Share Link