Open Access
ARTICLE
Experimental Study of the Effect of Water Salinity on the Parameters of an Equilibrium Droplet Cluster Levitating over a Water Layer
1 Microhydrodynamic Technologies Laboratory, X-BIO Institute, University of Tyumen, Tyumen, 625003, Russia
2 Heat Transfer Laboratory, Research Center of Physical and Thermal Engineering, Joint Institute for High Temperatures, Moscow, 111116, Russia
3 Department of Chemical Engineering, Biotechnology and Materials, Engineering Science Faculty, Ariel University, Ariel, 407000, Israel
* Corresponding Author: Leonid A. Dombrovsky. Email:
Frontiers in Heat and Mass Transfer 2024, 22(1), 1-14. https://doi.org/10.32604/fhmt.2024.049335
Received 03 January 2024; Accepted 05 February 2024; Issue published 21 March 2024
Abstract
New experimental results, which are important for the potential use of small levitating droplets as biochemical microreactors, are reported. It is shown that the combination of infrared heating and reduced evaporation of saline water under the droplet cluster is sufficient to produce equilibrium saltwater droplets over a wide temperature range. The resulting universal dependence of droplet size on temperature simplifies the choice of optimal conditions for generating stable droplet clusters with droplets of the desired size. A physical analysis of the experimental results on the equilibrium size of saltwater droplets makes it possible to separate the effects related to the salinity of the water layer under the droplet cluster from the effects related to the reduction of water evaporation from the water droplets. This is expected to be important for further studies of heat transfer and diffusion in layers of evaporating solutions and condensed droplets.Graphic Abstract
Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.