Open Access
ARTICLE
BIO-MATHEMATICAL ANALYSIS FOR THE STAGNATION POINT FLOW OVER A NON-LINEAR STRETCHING SURFACE WITH THE SECOND ORDER VELOCITY SLIP AND TITANIUM ALLOY NANOPARTICLE
a Department of Mathematics, School of Advanced Sciences, VIT University, Vellore-632014, INDIA.
* Corresponding Author: Email:
Frontiers in Heat and Mass Transfer 2018, 10, 1-11. https://doi.org/10.5098/hmt.10.13
Abstract
The main object of this paper is to steady the Bio-mathematical analysis for the stagnation point flow over a non-linear stretching sheet with the velocity slip and Casson fluid model. Analysis for the both titanium and titanium alloy within the pure blood as taken as the base fluid. The governing non-linear partial differential equations are transformed into ordinary which are solved numerically by utilizing the fourth order RungeKutta method with shooting technique. Graphical results have been presented for dimensionless stream function, velocity profile, shear stress, temperature profile for various physical parameters of interest. It was found that the velocity profile of the nanofluids decreases and increases with the increasing the first-order and second-order slips respectively. Comparisons with previously published work are performed and the results are found to be excellent agreement.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.