Flow-Induced Forces in Agglomerates
J.J. Derksen1, D. Eskin2
FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.4, pp. 341-356, 2011, DOI:10.3970/fdmp.2011.007.341
Abstract Direct simulations of laminar solid-liquid flow in micro-channels with full resolution of the solid-liquid interfaces have been performed. The solids phase consists of simple agglomerates, assembled of monosized, spherical particles. The flow of the interstitial liquid is solved with the lattice-Boltzmann method. Solids and fluid dynamics are two-way coupled. The simulations keep track of the flow-induced forces in the agglomerates. The effects of agglomerate type (doublets, triplets, and quadruplets), solids loading, and channel geometry on (the statistics of the) flow and collision-induced forces have been investigated. By comparing these forces with agglomerate strength, we would More >