Home / Journals / FDMP / Vol.7, No.1, 2011
Special lssues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Onset of Hydrothermal Instability in Liquid Bridge. Experimental Benchmark

    V. Shevtsova1, A. Mialdun1, H. Kawamura2, I. Ueno2, K. Nishino3, M. Lappa4
    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.1, pp. 1-28, 2011, DOI:10.3970/fdmp.2011.007.001
    Abstract The experimental results from nine benchmark test cases conducted by five different groups are presented. The goal of this study is to build an experimental database for validation of numerical models in liquid bridge geometry. The need arises as comparison of numerical results with a single experiment can lead to a large discrepancy due to specific experimental conditions. Perfectly conducting rigid walls and, especially, idealized boundary conditions at the free surface employed in numerical studies are not always realized in experiments. The experimental benchmark has emphasized strong sensitivity of the threshold of instability to the liquid bridge shape. A clear… More >

  • Open AccessOpen Access

    ARTICLE

    A Numerical Simulation Study of Silicon Dissolution under Magnetic Field

    A. Kidess1, N. Armour1, S. Dost1,2
    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.1, pp. 29-56, 2011, DOI:10.3970/fdmp.2011.007.029
    Abstract When a metallic liquid is subject to strong magnetic body forces, the issues of convergence and numerical stability may arise in numerical simulations. Handling of magnetic body force terms needs care. In this work we have studied two open codes and discussed the related issues. Magnetic force and mass transport terms were added to these codes. Handling the stability issues was discussed. The developed systems were validated by two benchmark cases. Then, the dissolution process of silicon into the germanium melt was selected as an application. The objective was the numerical study of the dissolution process with and without the… More >

  • Open AccessOpen Access

    ARTICLE

    Natural Convection in an Inclined T-Shaped Cavity

    Hicham Rouijaa1, Mustapha El Alami2, El Alami Semma3, Mostafa Najam2
    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.1, pp. 57-70, 2011, DOI:10.3970/fdmp.2011.007.057
    Abstract This article presents a numerical study on natural convection in a bidimensional inclined "T"-shaped cavity. The governing equations are solved in the framework of a control-volume method resorting to the SIMPLEC algorithm (for the treatment of pressure-velocity coupling). Special emphasis is given to the investigation of the effect of inclination on the heat transfer and mass flow rate. Results are discussed for Prandtl number Pr=0.72, geometry with: opening width C=0.15, blocks gap D=0.5, blocks height, B=0.5 and different values of the Rayleigh number (104 ≤ Ra ≤ 106). More >

  • Open AccessOpen Access

    ARTICLE

    Combined Thermal Radiation and Laminar Mixed Convection in a Square Open Enclosure with Inlet and Outlet Ports

    Mohamed Ammar Abbassi1,2, Kamel Halouani1, Xavier Chesneau3, Belkacem Zeghmati3
    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.1, pp. 71-96, 2011, DOI:10.3970/fdmp.2011.007.071
    Abstract Mixed convection inside a square cavity with inlet and outlet ports is numerically simulated considering thermal radiation effect. The non dimensional transfer equations, based on Boussinesq assumption and the radiative heat transfer equation are solved by the finite-volume-method and the TDMA algorithm. Results, presented for a gray fluid and a wide range of dimensionless numbers; Reynolds (Re=10-1000), Richardson (Ri=0-0.01), Boltzmann (Bo=0.1-100), radiation to conduction parameter (Rc=0.1-100), and optical thickness (τ = 0.1-10) show that the radiation significantly affects temperature distribution. Streamlines are also sensitive to radiative parameters (as optical thickness) but less than temperature. More >

  • Open AccessOpen Access

    ARTICLE

    Convective Mixed Heat Transfer in a Square Cavity with Heated Rectangular Blocks and Submitted to a Vertical Forced Flow

    Ahmed Meskini, Mostafa Najam, Mustapha El Alami
    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.1, pp. 97-110, 2011, DOI:10.3970/fdmp.2011.007.097
    Abstract A numerical mixed convection investigation was carried out to study the enhancement of heat transfer in a square cavity with identical heated rectangular blocks adjacent to its upper wall, and submitted to a vertical jet of fresh air from below. The configuration so defined is an inverted "T"-shaped cavity presenting symmetry with respect to a vertical axis passing by the middle of the openings. The governing equations have been solved using the finite difference method. The parameters of this study are: Rayleigh number 104 ≤ Ra ≤ 106, Reynolds number 1 ≤ Re ≤ 1000, the opening width C=0.15, the… More >

  • Open AccessOpen Access

    ARTICLE

    Effect of Longitudinal Roughness on Magnetic Fluid Based Squeeze Film between Truncated Conical Plates

    P.I. Andharia1, G.M. Deheri2
    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.1, pp. 111-124, 2011, DOI:10.3970/fdmp.2011.007.111
    Abstract An attempt has been made to study and analyze the performance of a magnetic fluid based squeeze film between rough truncated conical plates. The lubricant used here is a magnetic fluid and the external magnetic field is oblique to the lower plate. The bearing surfaces are assumed to be longitudinally rough. The roughness of the bearing surfaces is modeled by a stochastic random variable with nonzero mean, variance and skewness. Efforts have been made to average the associated Reynolds equation with respect to the random roughness parameter. The concerned non-dimensional equation is solved with appropriate boundary conditions in dimensionless form… More >

Per Page:

Share Link