Home / Journals / FDMP / Vol.6, No.4, 2010
Special lssues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Convective Boiling in Metallic Foam: Experimental Analysis of the Pressure Loss

    B. Madani1, F. Topin2, L. Tadrist2
    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 351-368, 2010, DOI:10.3970/fdmp.2010.006.351
    Abstract The present work deals with the hydraulic characterization of two-phase flow with phase change in a channel filled with metallic foam. We provide a general presentation of metallic foams including morphological characteristics, fabrication processes and industrial applications. The experimental facility, which consists of a hydrodynamic loop, the test section, measurement devices, and the data acquisition system, is presented. The Metallic foam sample tested in the present work is manufactured by SCPS (French manufacturer). N-pentane is used as a coolant fluid. The mass velocity values lie between 4 and 49 kg/ m2s, while the heating power in the test section ranges… More >

  • Open AccessOpen Access

    ARTICLE

    Marangoni-Natural Convection in Liquid Metals in the Presence of a Tilted Magnetic Field

    S. Hamimid1, A.Amroune1
    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 369-384, 2010, DOI:10.3970/fdmp.2010.006.369
    Abstract The Navier-Stokes and energy equations are numerically solved to investigate two-dimensional convection (originating from the combined effect of buoyancy and surface tension forces) in a liquid metal subjected to transverse magnetic fields. In particular, a laterally heated horizontal cavity with aspect ratio (height/width) =1 and Pr=0.015 is considered (typically associated with the horizontal Bridgman crystal growth process and commonly used for benchmarking purposes). The effect of a uniform magnetic field with different magnitudes and orientations on the stability of the two distinct convective solution branches (with a single-cell or two-cell pattern) of the steady-state flows is investigated. The effects induced… More >

  • Open AccessOpen Access

    ARTICLE

    Inclination Impact on the Mass Transfer Process Resulting from the Interaction of Twin Tandem Jets with a Crossflow

    A. Radhouane1, N. Mahjoub Said1, H. Mhiri1, G. Le Palec2, P. Bournot2
    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 385-398, 2010, DOI:10.3970/fdmp.2010.006.385
    Abstract "Twin jets in crossflow" is a complex configuration that raises an increasing interest due to its presence in various common applications such as chimney stacks, film cooling, VSTOL aircrafts, etc... In the present paper, the twin jets were arranged inline with an oncoming crossflow;they were also inclined which resulted in similar elliptic cross sections of the nozzles' exits. The exploration of the flows in interaction was carried out numerically by means of the finite volume method together with the second order turbulent closure model, namely the Reynolds stress Model (RSM), and a non uniform grid system particularly refined near the… More >

  • Open AccessOpen Access

    ARTICLE

    Droplet Behavior within an LPP Ambiance

    M. Chrigui1,2, L. Schneider1, A. Zghal2, A. Sadiki1, J. Janicka1
    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 399-408, 2010, DOI:10.3970/fdmp.2010.006.399
    Abstract This paper deals with the numerical simulation of droplet dispersion and evaporation within an LPP (Lean Premix Prevaporized) burner. The Eulerian-Lagrangian approach was used for this purpose, and a fully two way-coupling was accounted for. For the phase transition, a non-equilibrium evaporation model was applied that differs strongly from the equilibrium one where there are high evaporation rates. The non-equilibrium conditions were fulfilled in the investigated configuration, as the droplets at the inlet had a mean diameter of 50mm. The numerical results of water droplet velocities, corresponding fluctuations, and diameters were compared with experimental data. Good agreement was found. More >

  • Open AccessOpen Access

    ARTICLE

    An Experimental Study Of An Electroaerodynamic Actuator

    R. Mestiri1, R.Hadaji1, S. Ben Nasrallah1
    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 409-418, 2010, DOI:10.3970/fdmp.2010.006.409
    Abstract The electroaerodynamic actuator or plasma actuator uses the characteristics of the non-thermal surface plasmas. These plasmas are created in atmospheric pressure by a DC electrical corona discharge at the surface of a dielectric material. The two electrodes are two conductive parallel wires. The applied voltage is of several kilovolts. The corona discharge creates a tangential electric wind that can modify the boundary layer flow properties. In this paper, we present the results found for two geometric configurations: the flat plate and the cylinder. In order to study the discharge specificity, we have found the current- voltage characteristics for different inter-electrode… More >

  • Open AccessOpen Access

    ARTICLE

    Finite Element Analysis of Elastohydrodynamic Cylindrical Journal Bearing

    L. Dammak, E. Hadj-Taïeb
    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 419-430, 2010, DOI:10.3970/fdmp.2010.006.419
    Abstract This paper presents a short and focused analysis of the pressure development inside the fluid film related to a journal bearing (i.e. the pressure distribution in the the gap between the shaft, generally referred to as the "journal", and the bearing). The related flow is considered to be isotherm, laminar, steady and incompressible. The lubricant is assumed to be an isoviscous fluid. The Reynolds equation governing the lubricant pressure is derived from the coupled continuity and momentum balance equations written in the framework of the Stokes theory. The non linear system given by coupled equations for fluid pressure development (the… More >

Per Page:

Share Link