Home / Journals / FDMP / Vol.5, No.4, 2009
Special lssues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Numerical Simulation of Three Dimensional Low Prandtl Liquid Flow in a Parallelepiped Cavity Under an external Magnetic Field

    F. Mechighel1,2, M. El Ganaoui1, M. Kadja2, B. Pateyron3, S. Dost4
    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.4, pp. 313-330, 2009, DOI:10.3970/fdmp.2009.005.313
    Abstract A numerical study has been carried out to investigate the three-dimen -sional buoyant flow in a parallelepiped box heated from below and partially from the two sidewalls (a configuration commonly used for solidification problems and crystal growth systems). Attention has been paid, in particular, to phenomena of symmetry breaking and transition to unsteady non-symmetric convection for a low Prandtl number fluid (Pr=0.01). The influence of an applied horizontal magnetic field on the stability properties of the flow has been also considered. Results obtained may be summarized as follows: In the absence of magnetic field and for relatively small values of… More >

  • Open AccessOpen Access

    ARTICLE

    Numerical and Experimental Study of Forced Mixing with Static Magnetic Field on SiGe System

    N. Armour1, S. Dost1,2
    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.4, pp. 331-344, 2009, DOI:10.3970/fdmp.2009.005.331
    Abstract A combined numerical and experimental investigation has been undertaken to explore the benefits of an applied static magnetic field on Silicon transport into a Germanium melt. This work utilized a similar material configuration to that used in the Liquid Phase Diffusion (LPD) and Melt-Replenishment Czochralski (Cz) growth systems. The measured concentration profiles from the samples processed with and without the application of magnetic field showed very similar shape. The amount of silicon transport into the melt is slightly higher in the samples processed under magnetic field, and there is a substantial difference in dissolution interface shape indicating a change in… More >

  • Open AccessOpen Access

    ARTICLE

    3D Numerical Modeling of Soluble Surfactant at Fluidic Interfaces Based on the Volume-of-Fluid Method

    A. Alke1, D. Bothe1
    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.4, pp. 345-372, 2009, DOI:10.3970/fdmp.2009.005.345
    Abstract We present a computational approach based on the Volume-of-Fluid (VOF) method for simulating the influence of a soluble surfactant on the behavior of two-phase systems with deformable interface. Our approach is applicable to diffusion controlled processes, where the relation between the area-specific excess surfactant concentration on the interface and the volume-specific concentration adjacent to the interface is given by an adsorption isotherm. Main issues of the numerical model are an extended surface transport theorem used for describing the interfacial flux and an iso-surface of the VOF-variable used as a connected approximation for the interface. 3D-simulations of a bubble moving through… More >

  • Open AccessOpen Access

    ARTICLE

    Theoretical and Experimental Investigation of Water Flow through Porous Ceramic Clay Composite Water Filter

    A. K. Plappally1,3, I. Yakub2,3, L. C. Brown1,2,3, A. B. O. Soboyejo1
    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.4, pp. 373-398, 2009, DOI:10.3970/fdmp.2009.005.373
    Abstract Water flow through point-of-use porous ceramic water treatment filters have been theoretically analyzed in this technical paper. Filters tested were manufactured by combining low cost materials namely, clay and sawdust. Three filters with distinct volume fractions of clay to sawdust (75:25, 65:35 and 50:50) were tested. Sintered clay filters casted in frustum shapes were structurally characterized using mercury intrusion porosimetry. A linear increase in porosity with volume fraction of sawdust was observed. Flow experiments were carried out at constant room temperature and pressure. Potable tap water was used in these studies. Flows through filters occurring with drop in the head… More >

  • Open AccessOpen Access

    ARTICLE

    Fuel Cell Performance Augmentation: Gas Flow Channel Design for Fuel Optimization

    A. B. Mahmud Hasan1,2, S.M. Guo1, M.A. Wahab1
    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.4, pp. 399-410, 2009, DOI:10.3970/fdmp.2009.005.399
    Abstract The effects of gas flow channel design were studied experimentally for increasing fuel cell performance and fuel optimization. Three types of gas flow channels (serpentine, straight and interdigitated) were designed on the basis of water flooding due to electrochemical reactions, electro-osmotic drag, etc. Experimental results indicate that the best cell performance can be obtained by arranging interdigitated gas flow channel at the anode side and serpentine gas flow channel at the cathode side. Detailed analysis on complex two phase water generation and electrochemical phenomena behind those results were analyzed in this work to find out the best design for gas… More >

  • Open AccessOpen Access

    ARTICLE

    On the Application of Wavelets to One Dimensional Flame Simulations with Non-Unit Lewis Numbers

    R. Prosser1
    FDMP-Fluid Dynamics & Materials Processing, Vol.5, No.4, pp. 411-424, 2009, DOI:10.3970/fdmp.2009.005.411
    Abstract A novel wavelet-based method for the simulation of reacting flows on adaptive meshes is presented. The method is based on a subtraction algorithm, wherein the wavelet coefficients are calculated from the low resolution up (as opposed to the standard top-down approach). The advantage of this new method is that it allows the calculation of wavelet coefficients on sparse grids, and thus lends itself more readily to adaptive computational meshes than does the traditional wavelet algorithm. The approach is used to simulate a one-dimensional laminar pre-mixed flame with different Lewis numbers. The computational grid is adapted via the removal of grid… More >

Per Page:

Share Link