Home / Journals / FDMP / Vol.20, No.6, 2024
Special Issues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Gas-Water Production of a Continental Tight-Sandstone Gas Reservoir under Different Fracturing Conditions

    Yan Liu1, Tianli Sun2, Bencheng Wang1,*, Yan Feng2
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1165-1180, 2024, DOI:10.32604/fdmp.2023.041852 - 27 June 2024
    (This article belongs to the Special Issue: Solid, Fluid, and Thermal Dynamics in the Development of Unconventional Resources )
    Abstract A numerical model of hydraulic fracture propagation is introduced for a representative reservoir (Yuanba continental tight sandstone gas reservoir in Northeast Sichuan). Different parameters are considered, i.e., the interlayer stress difference, the fracturing discharge rate and the fracturing fluid viscosity. The results show that these factors affect the gas and water production by influencing the fracture size. The interlayer stress difference can effectively control the fracture height. The greater the stress difference, the smaller the dimensionless reconstruction volume of the reservoir, while the flowback rate and gas production are lower. A large displacement fracturing construction More >

  • Open AccessOpen Access

    ARTICLE

    Effects of Temperature and Liquid Nitrogen (LN2) on Coal’s Mechanical and Acoustic Emission (AE) Properties

    Teng Teng1,2, Yuhe Cai3, Linchao Wang3,*, Yanzhao Zhu2
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1181-1202, 2024, DOI:10.32604/fdmp.2023.044532 - 27 June 2024
    (This article belongs to the Special Issue: Fluids, Materials and Related Disasters in Geotechnical and Mining Engineering)
    Abstract Liquid nitrogen has shown excellent performances as a good fracturing medium in the extraction of unconventional natural gas, and its application in coalbed methane extraction is currently a research hotspot. This study focuses on the acoustic emission properties of coal specimens treated utilizing liquid nitrogen with varying initial temperatures in a three-point bending environment. Through examination of the load-displacement curves of the considered coal samples, their mechanical properties are also revealed for different initial temperatures and cycling frequencies. The findings demonstrate a gradual decline in the maximum load capacity of coal rock as the temperature… More >

  • Open AccessOpen Access

    ARTICLE

    Optimal Design of High-Speed Partial Flow Pumps using Orthogonal Tests and Numerical Simulations

    Jiaqiong Wang1,2, Tao Yang1, Chen Hu1, Yu Zhang3,*, Ling Zhou1,2
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1203-1218, 2024, DOI:10.32604/fdmp.2023.045825 - 27 June 2024
    Abstract To investigate the influence of structural parameters on the performances and internal flow characteristics of partial flow pumps at a low specific speed of 10000 rpm, special attention was paid to the first and second stage impeller guide vanes. Moreover, the impeller blade outlet width, impeller inlet diameter, blade inclination angle, and number of blades were considered for orthogonal tests. Accordingly, nine groups of design solutions were formed, and then used as a basis for the execution of numerical simulations (CFD) aimed at obtaining the efficiency values and heads for each design solution group. The More >

  • Open AccessOpen Access

    ARTICLE

    Oscillatory Dynamics of a Spherical Solid in a Liquid in an Axisymmetric Variable Cross Section Channel

    Ivan Karpunin*
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1219-1232, 2024, DOI:10.32604/fdmp.2024.051062 - 27 June 2024
    (This article belongs to the Special Issue: Advanced Problems in Fluid Mechanics)
    Abstract The dynamics of a solid spherical body in an oscillating liquid flow in a vertical axisymmetric channel of variable cross section is experimentally studied. It is shown that the oscillating liquid leads to the generation of intense averaged flows in each of the channel segments. The intensity and direction of these flows depend on the dimensionless oscillating frequency. In the region of studied frequencies, the dynamics of the considered body is examined when the primary vortices emerging in the flow occupy the whole region in each segment. For a fixed frequency, an increase in the… More >

  • Open AccessOpen Access

    ARTICLE

    A Novel Method for Determining the Void Fraction in Gas-Liquid Multi-Phase Systems Using a Dynamic Conductivity Probe

    Xiaochu Luo1, Xiaobing Qi2, Zhao Luo3, Zhonghao Li4, Ruiquan Liao1, Xingkai Zhang1,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1233-1249, 2024, DOI:10.32604/fdmp.2023.045737 - 27 June 2024
    Abstract Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity. This study presents a novel approach for determining the void fraction based on a reciprocating dynamic conductivity probe used to measure the liquid film thickness under forced annular-flow conditions. The measurement system comprises a cyclone, a conductivity probe, a probe reciprocating device, and a data acquisition and processing system. This method ensures that the flow pattern is adjusted to a forced annular flow, thereby minimizing the influence of More >

  • Open AccessOpen Access

    ARTICLE

    Structure Optimization of a Tesla Turbine Using an Organic Rankine Cycle Technology

    Yongguo Li1,2, Caiyin Xu1,2,*, Can Qin1,2, Dingjian Zheng1,2
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1251-1263, 2024, DOI:10.32604/fdmp.2023.044804 - 27 June 2024
    Abstract The so-called ORC (Organic Rankine Cycle) heat recovery technology has attracted much attention with regard to medium and low temperature waste heat recovery. In the present study, it is applied to a Tesla turbine. At the same time, the effects of the disc speed, diameter and inter-disc gap on the internal flow field and output power of the turbine are also investigated by means of CFD (Computational Fluid Dynamics) numerical simulation, by which the pressure, velocity, and output efficiency of the internal flow field are obtained under different internal and external conditions. The highest efficiency More >

  • Open AccessOpen Access

    ARTICLE

    An Experimental Study on the Effect of a Nanofluid on Oil-Water Relative Permeability

    Hui Tian1, Dandan Zhao1, Yannan Wu2,3,*, Xingyu Yi1, Jun Ma1, Xiang Zhou4
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1265-1277, 2024, DOI:10.32604/fdmp.2023.044833 - 27 June 2024
    Abstract The low porosity and low permeability of tight oil reservoirs call for improvements in the current technologies for oil recovery. Traditional chemical solutions with large molecular size cannot effectively flow through the nano-pores of the reservoir. In this study, the feasibility of Nanofluids has been investigated using a high pressure high temperature core-holder and nuclear magnetic resonance (NMR). The results of the experiments indicate that the specified Nanofluids can enhance the tight oil recovery significantly. The water and oil relative permeability curve shifts to the high water saturation side after Nanofluid flooding, thereby demonstrating an More >

    Graphic Abstract

    An Experimental Study on the Effect of a Nanofluid on Oil-Water Relative Permeability

  • Open AccessOpen Access

    ARTICLE

    Heat Transfer Enhancement of the Absorber Tube in a Parabolic Trough Solar Collector through the Insertion of Novel Cylindrical Turbulators

    Yasser Jebbar1,2,*, Fadhil Fluiful2, Wisam Khudhayer3
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1279-1297, 2024, DOI:10.32604/fdmp.2024.050753 - 27 June 2024
    Abstract This study includes an experimental and numerical analysis of the performances of a parabolic trough collector (PTC) with and without cylindrical turbulators. The PTC is designed with dimensions of 2.00 m in length and 1.00 m in width. The related reflector is made of lined sheets of aluminum, and the tubes are made of stainless steel used for the absorption of heat. They have an outer diameter of 0.051 m and a wall thickness of 0.002 m. Water, used as a heat transfer fluid (HTF), flows through the absorber tube at a mass flow rate… More >

  • Open AccessOpen Access

    ARTICLE

    Influence of Polyaluminum Chloride Residue on the Strength and Microstructure of Cement-Based Materials

    Ping Xu1,*, Zhiwei Zhang1, Zhenguo Hou2,3, Mankui Zheng1, Jin Tong1
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1299-1312, 2024, DOI:10.32604/fdmp.2023.046183 - 27 June 2024
    Abstract In this paper, cement and dechlorinated Polyaluminum Chloride Residue (PACR) have been used to prepare a net slurry and mortar specimens. Two hydration activity indicators have been used to quantitatively analyze the dechlorinated PACR hydration activity. In particular, the effect of dechlorinated PACR content on the compressive strength of mortar has been assessed by means of compressive strength tests. Moreover, X-ray diffraction (XRD) and scanning electron microscopy (SEM) have been employed to observe the microstructure of the considered hydration products. The following results have been obtained. The 28th day activity index of the dechlorinated PACR… More >

  • Open AccessOpen Access

    ARTICLE

    A Well Productivity Model for Multi-Layered Marine and Continental Transitional Reservoirs with Complex Fracture Networks

    Huiyan Zhao1, Xuezhong Chen1, Zhijian Hu2,*, Man Chen1, Bo Xiong3, Jianying Yang1
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1313-1330, 2024, DOI:10.32604/fdmp.2024.048840 - 27 June 2024
    (This article belongs to the Special Issue: Advances in Seepage Mechanism and Numerical Simulation of Unconventional Reservoirs)
    Abstract Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis, a model is developed to predict the related well production rate. This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales, as well as the flow characteristics in different types of thin layers (tight sandstone gas, shale gas, and coalbed gas). Moreover, a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir. A… More >

    Graphic Abstract

    A Well Productivity Model for Multi-Layered Marine and Continental Transitional Reservoirs with Complex Fracture Networks

  • Open AccessOpen Access

    ARTICLE

    Transient Analysis of a Reactor Coolant Pump Rotor Seizure Nuclear Accident

    Mengdong An1, Weiyuan Zhong1, Wei Xu2, Xiuli Wang1,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1331-1349, 2024, DOI:10.32604/fdmp.2023.046604 - 27 June 2024
    (This article belongs to the Special Issue: Multiphase Flow and Vortex Dynamics in Fluid Machinery)
    Abstract The reactor coolant pump (RCP) rotor seizure accident is defined as a short-time seizure of the RCP rotor. This event typically leads to an abrupt flow decrease in the corresponding loop and an ensuing reactor and turbine trip. The significant reduction of core coolant flow while the reactor is being operated at full load can have very negative consequences. This potentially dangerous event is typically characterized by a complex transient behavior in terms of flow conditions and energy transformation, which need to be analyzed and understood. This study constructed transient flow and rotational speed mathematical More >

    Graphic Abstract

    Transient Analysis of a Reactor Coolant Pump Rotor Seizure Nuclear Accident

  • Open AccessOpen Access

    ARTICLE

    Convection and Stratification of Temperature and Concentration

    Alexey Fedyushkin*
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1351-1364, 2024, DOI:10.32604/fdmp.2024.050267 - 27 June 2024
    (This article belongs to the Special Issue: Advanced Problems in Fluid Mechanics)
    Abstract This study is devoted to an analysis of natural convection and the emergence of delamination in an incompressible fluid encapsulated in a closed region heated from the side. Weak, medium and intensive modes of stationary laminar thermal and thermo-concentration convection are considered. It is shown that nonlinear flow features can radically change the flow structure and characteristics of heat and mass transfer. Moreover, the temperature and concentration segregation in the center of the square region display a non-monotonic dependence on the Grashof number (flow intensity). The formation of a nonstationary periodic structure of thermal convection More >

  • Open AccessOpen Access

    ARTICLE

    Impact of Osmotic Pressure on Seepage in Shale Oil Reservoirs

    Lijun Mu, Xiaojia Xue, Jie Bai*, Xiaoyan Li, Xueliang Han
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1365-1379, 2024, DOI:10.32604/fdmp.2024.049013 - 27 June 2024
    (This article belongs to the Special Issue: Solid, Fluid, and Thermal Dynamics in the Development of Unconventional Resources )
    Abstract Following large-scale volume fracturing in shale oil reservoirs, well shut-in measures are generally employed. Laboratory tests and field trials have underscored the efficacy of fracturing fluid imbibition during the shut-in phase in augmenting shale oil productivity. Unlike conventional reservoirs, shale oil reservoirs exhibit characteristics such as low porosity, low permeability, and rich content of organic matter and clay minerals. Notably, the osmotic pressure effects occurring between high-salinity formation water and low-salinity fracturing fluids are significant. The current understanding of the mobilization patterns of crude oil in micro-pores during the imbibition process remains nebulous, and the… More >

  • Open AccessOpen Access

    ARTICLE

    An Experimental Analysis of Gas-Liquid Flow Breakdown in a T-Junction

    Lihui Ma1,*, Zhuo Han1, Wei Li1, Guangfeng Qi1, Ran Cheng2, Yuanyuan Wang1, Xiangran Mi3, Xiaohan Zhang1, Yunfei Li1
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1381-1392, 2024, DOI:10.32604/fdmp.2024.046405 - 27 June 2024
    (This article belongs to the Special Issue: Multiphase Flow and Vortex Dynamics in Fluid Machinery)
    Abstract When a gas-liquid two-phase flow (GLTPF) enters a parallel separator through a T-junction, it generally splits unevenly. This phenomenon can seriously affect the operation efficiency and safety of the equipment located downstream. In order to investigate these aspects and, more specifically, the so-called bias phenomenon (all gas and liquid flowing to one pipe, while the other pipe is a liquid column that fluctuates up and down), laboratory experiments were carried out by using a T-junction connected to two parallel vertical pipes. Moreover, a GLTPF prediction model based on the principle of minimum potential energy was… More >

  • Open AccessOpen Access

    ARTICLE

    An Investigation into the Performances of Cement Mortar Incorporating Superabsorbent Polymer Synthesized with Kaolin

    Xiao Huang1,2, Jin Yang3,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1393-1406, 2024, DOI:10.32604/fdmp.2024.046360 - 27 June 2024
    (This article belongs to the Special Issue: Advances in Solid Waste Processing and Recycling Technologies for Civil Engineering Materials)
    Abstract Cement-based materials are fundamental in the construction industry, and enhancing their properties is an ongoing challenge. The use of superabsorbent polymers (SAP) has gained significant attention as a possible way to improve the performance of cement-based materials due to their unique water-absorption and retention properties. This study investigates the multifaceted impact of kaolin intercalation-modified superabsorbent polymers (K-SAP) on the properties of cement mortar. The results show that K-SAP significantly affects the cement mortar’s rheological behavior, with distinct phases of water absorption and release, leading to changes in workability over time. Furthermore, K-SAP alters the hydration More >

  • Open AccessOpen Access

    ARTICLE

    Modeling of Leachate Propagation in a Municipal Solid Waste Landfill Foundation

    Nadezhda Zubova*, Andrey Ivantsov
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1407-1424, 2024, DOI:10.32604/fdmp.2024.051130 - 27 June 2024
    (This article belongs to the Special Issue: Advanced Problems in Fluid Mechanics)
    Abstract The study deals with the numerical modeling of leachate distribution in the porous medium located under a municipal solid waste disposal landfill (MSWLF). The considered three-layer system is based on geological data obtained from field measurements. For simplicity, the problem is investigated by assuming a two-component approach. Nevertheless, the heat produced by landfills due to biological and chemical processes and the thermal diffusion mechanism contributing to pollution transport are taken into account. The numerical modeling of the propagation of leachate in the considered layered porous medium is implemented for parameters corresponding to natural soil and More >

  • Open AccessOpen Access

    ARTICLE

    A Numerical Investigation of the Effect of Boundary Conditions on Acoustic Pressure Distribution in a Sonochemical Reactor Chamber

    Ivan Sboev1,*, Tatyana Lyubimova2,3, Konstantin Rybkin3, Michael Kuchinskiy2,3
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1425-1439, 2024, DOI:10.32604/fdmp.2024.051341 - 27 June 2024
    (This article belongs to the Special Issue: Advanced Problems in Fluid Mechanics)
    Abstract The intensification of physicochemical processes in the sonochemical reactor chamber is widely used in problems of synthesis, extraction and separation. One of the most important mechanisms at play in such processes is the acoustic cavitation due to the non-uniform distribution of acoustic pressure in the chamber. Cavitation has a strong impact on the surface degradation mechanisms. In this work, a numerical calculation of the acoustic pressure distribution inside the reactor chamber was performed using COMSOL Multiphysics. The numerical results have revealed the dependence of the structure of the acoustic pressure field on the boundary conditions More >

    Graphic Abstract

    A Numerical Investigation of the Effect of Boundary Conditions on Acoustic Pressure Distribution in a Sonochemical Reactor Chamber

Per Page:

Share Link