Home / Journals / FDMP / Vol.20, No.5, 2024
Special Issues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Analysis of Calcined Red Mud Properties and Related Mortar Performances

    Zhengfan Lyu1,3, Yulin Li2,3, Mengmeng Fan1,3,*, Yan Huang1, Chenguang Li2
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 901-913, 2024, DOI:10.32604/fdmp.2023.043512
    Abstract Red mud (RM) is a low-activity industrial solid waste, and its utilization as a resource is currently a hot topic. In this study, the micro characteristics of red mud at different calcination temperatures were analyzed using X-ray diffraction and scanning electron microscopy. The performance of calcined red mud was determined through mortar strength tests. Results indicate that high-temperature calcination can change the mineral composition and microstructure of red mud, and increase the surface roughness and specific surface area. At the optimal temperature of 700°C, the addition of calcined red mud still leads to a decrease More >

    Graphic Abstract

    Analysis of Calcined Red Mud Properties and Related Mortar Performances

  • Open AccessOpen Access

    ARTICLE

    Influence of Ultra Fine Glass Powder on the Properties and Microstructure of Mortars

    Wei Chen*, Dingdan Liu, Yue Liang
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 915-938, 2024, DOI:10.32604/fdmp.2024.046335
    (This article belongs to the Special Issue: Advances in Solid Waste Processing and Recycling Technologies for Civil Engineering Materials)
    Abstract This study focuses on the effect of ultrafine waste glass powder on cement strength, gas permeability and pore structure. Varying contents were considered, with particle sizes ranging from 2 to 20 μm. Moreover, alkali activation was considered to ameliorate the reactivity and cementitious properties, which were assessed by using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and specific surface area pore size distribution analysis. According to the results, without the addition of alkali activators, the performance of glass powder mortar decreases as the amount of glass powder increases, affecting various aspects such as strength… More >

  • Open AccessOpen Access

    ARTICLE

    A Study on the Performances of Solar Air Collectors Having a Hemispherical Dimple on the Absorber Plate

    Shuilian Li1, Fan Zeng1, Xinli Wei2,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 939-955, 2024, DOI:10.32604/fdmp.2023.043614
    Abstract In order to increase the efficiency of solar air collectors, a new variant with a protrusion is proposed in this study, and its performances are analyzed from two points of view, namely, in terms of optics and thermodynamics aspects. By comparing and analyzing the light paths of the protrusion and the dimple, it can be concluded that when sunlight shines on the dimple, it is reflected and absorbed multiple times, whereas for the sunlight shining on the protrusion, there is no secondary reflection or absorption of light. When the lighting area and the properties of… More >

  • Open AccessOpen Access

    ARTICLE

    On the Features of Thermal Convection in a Compressible Gas

    Igor B. Palymskiy1,2,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 957-974, 2024, DOI:10.32604/fdmp.2024.048829
    (This article belongs to the Special Issue: Advanced Problems in Fluid Mechanics)
    Abstract The fully nonlinear equations of gas dynamics are solved in the framework of a numerical approach in order to study the stability of the steady mode of Rayleigh-Bénard convection in compressible, viscous and heat-conducting gases encapsulated in containers with no-slip boundaries and isothermal top and bottom walls. An initial linear temperature profile is assumed. A map of the possible convective modes is presented assuming the height of the region and the value of the temperature gradient as influential parameters. For a relatively small height, isobaric convection is found to take place, which is taken over… More >

  • Open AccessOpen Access

    ARTICLE

    A Novel Fracturing Fluid with High-Temperature Resistance for Ultra-Deep Reservoirs

    Lian Liu1,2, Liang Li1,2, Kebo Jiao1,2,*, Junwei Fang1,2, Yun Luo1,2
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 975-987, 2024, DOI:10.32604/fdmp.2023.030109
    (This article belongs to the Special Issue: Advances in Seepage Mechanism and Numerical Simulation of Unconventional Reservoirs)
    Abstract Ultra-deep reservoirs play an important role at present in fossil energy exploitation. Due to the related high temperature, high pressure, and high formation fracture pressure, however, methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used. In response to the above problem, a fracturing fluid with a density of 1.2~1.4 g/cm was developed by using Potassium formatted, hydroxypropyl guanidine gum and zirconium crosslinking agents. The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min More >

  • Open AccessOpen Access

    ARTICLE

    Study of Flow and Heat Transfer in an Ejector-Driven Swirl Anti-Icing Chamber

    Yi Tu1,*, Yuan Wu2, Yu Zeng3
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 989-1014, 2024, DOI:10.32604/fdmp.2024.045624
    Abstract The formation of ice on the leading edge of aircraft engines is a serious issue, as it can have catastrophic consequences. The Swirl Anti-Icing (SAI) system, driven by ejection, circulates hot fluid within a 360° annular chamber to heat the engine inlet lip surface and prevent icing. This study employs a validated Computational Fluid Dynamics (CFD) approach to study the impact of key geometric parameters of this system on flow and heat transfer characteristics within the anti-icing chamber. Additionally, the entropy generation rate and exergy efficiency are analyzed to assess the energy utilization in the… More >

  • Open AccessOpen Access

    ARTICLE

    Evaluation of Well Spacing for Primary Development of Fractured Horizontal Wells in Tight Sandstone Gas Reservoirs

    Fang Li1,*, Juan Wu1, Haiyong Yi2, Lihong Wu2, Lingyun Du1, Yuan Zeng1
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1015-1030, 2024, DOI:10.32604/fdmp.2023.043256
    (This article belongs to the Special Issue: Solid, Fluid, and Thermal Dynamics in the Development of Unconventional Resources )
    Abstract Methods for horizontal well spacing calculation in tight gas reservoirs are still adversely affected by the complexity of related control factors, such as strong reservoir heterogeneity and seepage mechanisms. In this study, the stress sensitivity and threshold pressure gradient of various types of reservoirs are quantitatively evaluated through reservoir seepage experiments. On the basis of these experiments, a numerical simulation model (based on the special seepage mechanism) and an inverse dynamic reserve algorithm (with different equivalent drainage areas) were developed. The well spacing ranges of Classes I, II, and III wells in the Q gas More >

    Graphic Abstract

    Evaluation of Well Spacing for Primary Development of Fractured Horizontal Wells in Tight Sandstone Gas Reservoirs

  • Open AccessOpen Access

    ARTICLE

    Influence of Methane-Hydrogen Mixture Characteristics on Compressor Vibrations

    Vladimir Ya. Modorskii, Ivan E. Cherepanov*
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1031-1043, 2024, DOI:10.32604/fdmp.2024.048494
    (This article belongs to the Special Issue: Advanced Problems in Fluid Mechanics)
    Abstract A transition to clean hydrogen energy will not be possible until the issues related to its production, transportation, storage, etc., are adequately resolved. Currently, however, it is possible to use methane-hydrogen mixtures. Natural gas can be transported using a pipeline system with the required pressure being maintained by gas compression stations. This method, however, is affected by some problems too. Compressors emergency stops can be induced by vibrations because in some cases, mechanical methods are not able to reduce the vibration amplitude. As an example, it is known that a gas-dynamic flow effect in labyrinth… More >

  • Open AccessOpen Access

    ARTICLE

    Smoothed-Particle Hydrodynamics Simulation of Ship Motion and Tank Sloshing under the Effect of Regular Waves

    Mingming Zhao, Jialong Jiao*
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1045-1061, 2024, DOI:10.32604/fdmp.2023.043744
    Abstract Predicting the response of liquefied natural gas (LNG) contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process. In this study, the coupled behavior due to ship motion and liquid tank sloshing has been simulated by the Smoothed-Particle Hydrodynamics (SPH) method. Firstly, the sloshing flow in a rectangular tank was simulated and the related loads were analyzed to verify and validate the accuracy of the present SPH solver. Then, a three-dimensional simplified LNG carrier model, including two prismatic liquid tanks and a wave tank, was introduced. Different More >

  • Open AccessOpen Access

    ARTICLE

    Performance Characterization of CR/PU Asphalt for Potential Application in Assembled Fast-Repairing Engineering

    Hong Pang1, Ao Lu1, Ming Xiong1, Chen Chen1, Xian Cao1, Xiong Xu2,3,*, Jing Wang1
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1063-1074, 2024, DOI:10.32604/fdmp.2023.044000
    Abstract Conventional repairing methods for asphalt pavement have some inconveniences, such as insufficient strength, and are typically time-consuming. To address these issues, this study proposes a new technological method to design and prepare a high-performance assembled asphalt concrete block for fast repair of the potholes. A series of composite modified asphalt binders with 10% crumb rubber (CR) and different dosages (0%, 1%, 3%, 5%) of polyurethane (PU) are examined to determine the optimized binder. Subsequently, the corresponding asphalt mixtures are prepared for further comparison and assessment of engineering properties, such as moisture-induced damage, high-temperature deformation, and More >

  • Open AccessOpen Access

    ARTICLE

    Aerodynamic Analysis and Optimization of Pantograph Streamline Fairing for High-Speed Trains

    Xiang Kan1, Yan Li2, Tian Li1,*, Jiye Zhang1
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1075-1091, 2024, DOI:10.32604/fdmp.2023.044050
    Abstract A pantograph serves as a vital device for the collection of electricity in trains. However, its aerodynamic resistance can limit the train’s running speed. As installing fairings around the pantograph is known to effectively reduce the resistance, in this study, different fairing lengths are considered and the related aerodynamic performances of pantograph are assessed. In particular, this is accomplished through numerical simulations based on the k-ω Shear Stress Transport (SST) two-equation turbulence model. The results indicate that the fairing diminishes the direct impact of high-speed airflow on the pantograph, thereby reducing its aerodynamic resistance. However, it More >

  • Open AccessOpen Access

    ARTICLE

    Investigation of Cavitation in NaCl Solutions in a Sonochemical Reactor Using the Foil Test Method

    Michael Kuchinskiy1,2,*, Tatyana Lyubimova1,2, Konstantin Rybkin2, Anastasiia Sadovnikova2, Vasiliy Galishevskiy2
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1093-1102, 2024, DOI:10.32604/fdmp.2024.050059
    (This article belongs to the Special Issue: Advanced Problems in Fluid Mechanics)
    Abstract Ultrasonic baths and sonochemical reactors are widely used in industrial applications dealing with surface cleaning and chemical synthesis. The processes of erosion, cleaning and structuring of the surface can be typically controlled by changing relevant influential parameters. In particular, in this work, we experimentally investigate the effect of NaCl concentration (0–5.5 mol/L) on the erosion of an aluminum foil under ultrasonic exposure at a frequency of 28 kHz. Special attention is paid to the determination of cavitation zones and their visualization using heat maps. It is found that at low NaCl concentration (0.3 mol/L), the More >

    Graphic Abstract

    Investigation of Cavitation in NaCl Solutions in a Sonochemical Reactor Using the Foil Test Method

  • Open AccessOpen Access

    ARTICLE

    A Numerical Study on the Effect of the Backflow Hole Position on the Performances of a Self-Priming Pump

    Dongwei Wang1,*, Lijian Cao1, Weidong Wang2, Jiajun Hu1
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1103-1122, 2024, DOI:10.32604/fdmp.2023.042654
    Abstract A self-priming pump is a centrifugal pump that has the ability to prime itself. Typically, its performance depends on the configuration of its reflux hole. In this study, the ANSYS FLUENT software is used to investigate the effects of three different radial positions of the reflux hole on gas-liquid two-phase distribution, pressure pulsation, and imp during self-priming. The research results indicate that: (1) The effective channel size for the reflux liquid to enter the volute varies depending on the location of the reflux hole. The effect of the impeller rotation on the reflux liquid becomes… More >

  • Open AccessOpen Access

    ARTICLE

    Optimization of a Pipeline-Type Savonius Hydraulic Turbine

    Xiaohui Wang1,2,3,*, Kai Zhang1, Xiaobang Bai4, Senchun Miao1, Zanxiu Wu1, Jicheng Li1
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1123-1146, 2024, DOI:10.32604/fdmp.2023.043272
    Abstract This study focuses on a DN50 pipeline-type Savonius hydraulic turbine. The torque variation of the turbine in a rotation cycle is analyzed theoretically in the framework of the plane potential flow theory. Related numerical simulations show that the change in turbine torque is consistent with the theoretical analysis, with the main power zone and the secondary power zone exhibiting a positive torque. In contrast, the primary resistance zone and the secondary resistance zone are characterized by a negative torque. Analytical relationships between the turbine’s internal flow angle θ, the deflector’s inclination angle α, and the… More >

  • Open AccessOpen Access

    ARTICLE

    Study on the Impact of Massive Refracturing on the Fracture Network in Tight Oil Reservoir Horizontal Wells

    Jianchao Shi1,2, Yanan Zhang3, Wantao Liu1,2, Yuliang Su3,*, Jian Shi1,2
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.5, pp. 1147-1163, 2024, DOI:10.32604/fdmp.2023.044500
    (This article belongs to the Special Issue: Solid, Fluid, and Thermal Dynamics in the Development of Unconventional Resources )
    Abstract Class III tight oil reservoirs have low porosity and permeability, which are often responsible for low production rates and limited recovery. Extensive repeated fracturing is a well-known technique to fix some of these issues. With such methods, existing fractures are refractured, and/or new fractures are created to facilitate communication with natural fractures. This study explored how different refracturing methods affect horizontal well fracture networks, with a special focus on morphology and related fluid flow changes. In particular, the study relied on the unconventional fracture model (UFM). The evolution of fracture morphology and flow field after More >

Per Page:

Share Link