Home / Journals / FDMP / Vol.20, No.11, 2024
Special Issues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    The Behavior of a Gas Bubble in a Square Cavity Filled with a Viscous Liquid Undergoing Vibrations

    Tatyana Lyubimova1,2,*, Yulia Garicheva2, Andrey Ivantsov1
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2417-2429, 2024, DOI:10.32604/fdmp.2024.052391 - 28 October 2024
    (This article belongs to the Special Issue: Advanced Problems in Fluid Mechanics)
    Abstract External vibrations are known to be one of the promising ways to control the behavior of multiphase systems. The computational modeling of the behavior of a gas bubble in a viscous liquid in a horizontal cylinder of square cross-section, which undergoes linearly polarized translational oscillations in weightless conditions, has been carried out. Under vibrations, the bubble moves towards the wall of the vessel with acceleration determined by the amplitudes and frequency of vibrations. Near the wall, at a distance of the order of the thickness of the viscous Stokes boundary layer, the effects of viscosity More >

  • Open AccessOpen Access

    ARTICLE

    Effect of Liquid Temperature on Surface and Mechanical Characteristics of Al-Mg Alloy Treated with a Cavitating Waterjet

    Can Kang1,*, Shifeng Yan1, Haixia Liu2, Jie Chen2, Kejin Ding3
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2431-2442, 2024, DOI:10.32604/fdmp.2024.055688 - 28 October 2024
    Abstract The presented study aims to reveal the effect of liquid temperature on cavitation-induced erosion of an Al-Mg alloy. An experimental work was conducted using a submerged cavitating waterjet to impact the specimen surface. For a certain cavitation number and a given standoff distance, different liquid temperatures were considered. Accordingly, a comprehensive comparison was implemented by inspecting the mass loss and surface morphology of the tested specimens. The results show that the cumulative mass loss increases continuously with the liquid temperature. A cavitation zone with an irregular profile becomes evident as the cavitation treatment proceeds. Increasing More >

    Graphic Abstract

    Effect of Liquid Temperature on Surface and Mechanical Characteristics of Al-Mg Alloy Treated with a Cavitating Waterjet

  • Open AccessOpen Access

    ARTICLE

    Implementation of a Nesting Repair Technology for Transportation Pipeline Repair

    Yijun Gao1,2, Yong Wang1,*, Qing Na1, Jiawei Zhang1, Aixiang Wu1
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2443-2458, 2024, DOI:10.32604/fdmp.2024.051385 - 28 October 2024
    Abstract Filling methods in the mining industry can maximize the recovery of mineral resources and protect the underground and surface environments. In recent years, such methods have been widely used in metal mines where pipeline transportation typically plays a decisive role in the safety and stability of the entire filling system. Because the filling slurry contains a large percentage of solid coarse particles, the involved pipeline is typically eroded and often damaged during such a process. A possible solution is the so-called nesting repair technology. In the present study, nesting a 127 mm outer diameter pipeline… More >

  • Open AccessOpen Access

    ARTICLE

    Fuzzy Comprehensive Analysis of Static Mixers Used for Selective Catalytic Reduction in Diesel Engines

    Xin Luan1,*, Guoqing Su1, Hailong Chen1, Min Kuang1,2
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2459-2473, 2024, DOI:10.32604/fdmp.2024.054621 - 28 October 2024
    Abstract The proper selection of a relevant mixer generally requires an effective assessment of several models against the application requirements. This is a complex task, as traditional evaluation methods generally focus only on a single aspect of performance, such as pressure loss, mixing characteristics, or heat transfer. This study assesses a urea-based selective catalytic reduction (SCR) system installed on a ship, where the installation space is limited and the distance between the urea aqueous solution injection position and the reactor is low; therefore, the static mixer installed in this pipeline has special performance requirements. In particular,… More >

  • Open AccessOpen Access

    ARTICLE

    Experimental Study of Thermal Convection and Heat Transfer in Rotating Horizontal Annulus

    Alexei Vjatkin*, Svyatoslav Petukhov, Victor Kozlov
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2475-2488, 2024, DOI:10.32604/fdmp.2024.052377 - 28 October 2024
    (This article belongs to the Special Issue: Advanced Problems in Fluid Mechanics)
    Abstract A genuine technological issue–the thermal convection of liquid in a rotating cavity–is investigated experimentally. The experiments are conducted within a horizontal annulus with isothermal boundaries. The inner boundary of the annulus has a higher temperature, thus exerting a stabilising influence on the system. It is shown that when the layer rotation velocity diminishes, two-dimensional azimuthally periodic convective rolls, rotating together with the cavity, emerge in a threshold manner. The development of convection is accompanied by a significant intensification of heat transfer through the layer. It is shown that the averaged thermal convection excitation in the… More >

    Graphic Abstract

    Experimental Study of Thermal Convection and Heat Transfer in Rotating Horizontal Annulus

  • Open AccessOpen Access

    ARTICLE

    Research on the Microstructure Construction Technology of Fully Degraded Polymer Vascular Stent Based on Electric Field Driven 3D Printing

    Yanpu Chao1,*, Fulai Cao1, Hao Yi2,3,*, Shuai Lu1, Yaohui Li1, Hui Cen1
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2489-2508, 2024, DOI:10.32604/fdmp.2024.051962 - 28 October 2024
    Abstract The so-called fourth-generation biodegradable vascular stent has become a research hotspot in the field of bio-engineering because of its good degradation ability and drug-loading characteristics. However, the preparation of polymer-degraded vascular stents is affected by known problem such as poor process flexibility, low forming accuracy, large diameter wall thickness, limited complex pore structure, weak mechanical properties of radial support and high process cost. In this study, a deposition technique based on a high-voltage electric-field-driven continuous rotating jet is proposed to fabricate fully degraded polymer vascular stents. The experimental results show that, due to the rotation… More >

    Graphic Abstract

    Research on the Microstructure Construction Technology of Fully Degraded Polymer Vascular Stent Based on Electric Field Driven 3D Printing

  • Open AccessOpen Access

    ARTICLE

    Numerical Study of the Efficiency of Multi-Layer Membrane Filtration in Desalination Processes

    Salma Moushi1,*, Jaouad Ait lahcen1, Ahmed El Hana1, Yassine Ezaier1, Ahmed Hader1,2, Imane Bakassi1, Iliass Tarras1, Yahia Boughaleb1,3
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2509-2521, 2024, DOI:10.32604/fdmp.2024.053501 - 28 October 2024
    (This article belongs to the Special Issue: Materials and Energy an Updated Image for 2023)
    Abstract Multi-layer membrane filtration is a widely used technology for separating and purifying different components of a liquid mixture. This technique involves passing the liquid mixture through a series of membranes with decreasing pore sizes, which allows for the separation of different components according to their molecular size. This study investigates the filtration process of a fluid through a two-dimensional porous medium designed for seawater desalination. The focus is on understanding the impact of various parameters such as the coefficient of friction, velocity, and the number of layers on filtration efficiency. The results reveal that the More >

  • Open AccessOpen Access

    ARTICLE

    The Wellbore Temperature and Pressure Behavior during the Flow Testing of Ultra-Deepwater Gas Wells

    Xingbin Zhao1, Neng Yang2, Hao Liang3, Mingqiang Wei2,*, Benteng Ma2, Dongling Qiu2
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2523-2540, 2024, DOI:10.32604/fdmp.2024.052766 - 28 October 2024
    (This article belongs to the Special Issue: Fluid and Thermal Dynamics in the Development of Unconventional Resources II)
    Abstract The transient flow testing of ultra-deepwater gas wells is greatly impacted by the low temperatures of seawater encountered over extended distances. This leads to a redistribution of temperature within the wellbore, which in turn influences the flow behavior. To accurately predict such a temperature distribution, in this study a comprehensive model of the flowing temperature and pressure fields is developed. This model is based on principles of fluid mechanics, heat transfer, mass conservation, and energy conservation and relies on the Runge-Kutta method for accurate integration in time of the resulting equations. The analysis includes the… More >

  • Open AccessOpen Access

    ARTICLE

    Stability of the Liquid-Vapor Interface under the Combined Influence of Normal Vibrations and an Electric Field

    Vladimir Konovalov*
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2541-2563, 2024, DOI:10.32604/fdmp.2024.051219 - 28 October 2024
    (This article belongs to the Special Issue: Advanced Problems in Fluid Mechanics)
    Abstract The regime of horizontal subcooled film boiling is characterized by the formation of a thin layer of vapor covering the surface of a flat horizontal heater. Based on the equations of motion of a viscous incompressible fluid and the equation of heat transfer, the stability of such a vapor film is investigated. The influence of the modulation of the gravity field caused by vertical vibrations of the heater of finite frequency, as well as a constant electric field applied normal to the surface of the heater, is taken into account. It is shown that in… More >

  • Open AccessOpen Access

    ARTICLE

    Numerical Simulation and Optimization of the Gas-Solid Coupled Flow Field and Discharging Performance of Straw Crushers

    Yuezheng Lan1, Yu Zhao2,*, Zhiping Zhai1, Meihua Fan2, Fushun Li2
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2565-2583, 2024, DOI:10.32604/fdmp.2024.053362 - 28 October 2024
    (This article belongs to the Special Issue: Aerodynamic Analysis and Optimal Design of Fluid Machinery)
    Abstract The quality of crushing, power consumption, and discharging performance of a straw crusher are greatly influenced by the characteristics of its internal flow field. To enhance the straw crusher’s flow field properties and improve the efficiency with which crushed material is discharged, first, the main structural parameters influencing the air flow in the crusher are discussed. Then, the coupled gas-solid flow field in the straw crusher is numerically calculated through solution of the Navier-Stokes equations and application of the discrete element method (DEM). Finally, the discharge performance index of the crusher is examined through detailed More >

  • Open AccessOpen Access

    ARTICLE

    Experimental Investigation of Particles Dynamics and Solid-Liquid Mixing Uniformity in a Stirred Tank

    Kai Yang1,2, Qinwen Yao1,2, Yingshan Li1,2, Wanchang Chen1,2, Saleh Khorasani3, Hua Wang1,2, Qingtai Xiao1,2,4,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2585-2602, 2024, DOI:10.32604/fdmp.2024.050704 - 28 October 2024
    (This article belongs to the Special Issue: Visual digital analysis and optimization in phase change heat transfer processes)
    Abstract Particle suspension and deposition dynamics are significant factors affecting the level of mixing quality in solid-liquid two-phase stirring processes. In general, the ability to increase the suspension rate and minimize deposition effects is instrumental in improving the uniformity of particle mixing, accelerating the reaction of involved solid-liquid two-phase, and improving the efficiency of production operations. In this work, suspension and deposition indicator based on the Betti number and a uniformity indicator are introduced and obtained by means of image analysis. The influence of the blade type, rotation speed, blade diameter and blade bottom height on… More >

    Graphic Abstract

    Experimental Investigation of Particles Dynamics and Solid-Liquid Mixing Uniformity in a Stirred Tank

  • Open AccessOpen Access

    ARTICLE

    Impact of the Inlet Flow Angle and Outlet Placement on the Indoor Air Quality

    Ikram Mostefa Tounsi1,*, Mustapha Boussoufi1, Amina Sabeur1, Mohammed El Ganaoui2
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2603-2616, 2024, DOI:10.32604/fdmp.2024.050641 - 28 October 2024
    (This article belongs to the Special Issue: Materials and Energy an Updated Image for 2023)
    Abstract This study aims to optimize the influence of the inlet inclination angle on the Indoor Air Quality (IAQ), heat, and temperature distribution in mixed convection within a two-dimensional square cavity filled with an air-CO2 mixture. The air-CO2 mixture enters the cavity through two inlet openings positioned at the top wall, which is set at the ambient temperature (TC). Three values of the Reynolds numbers, ranging from 1000 to 2000, are considered, while the Prandtl number is kept constant (Pr = 0.71). The temperature distribution and streamlines are shown for Rayleigh number (Ra) equal to 104, three inlet More >

  • Open AccessOpen Access

    ARTICLE

    Influence of Blade Number on the Performance of Hydraulic Turbines in the Transition Stage

    Fengxia Shi1,2, Guangbiao Zhao1,*, Yucai Tang1, Dedong Ma1, Xiangyun Shi1
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2617-2636, 2024, DOI:10.32604/fdmp.2024.053186 - 28 October 2024
    Abstract To analyze the effect of blade number on the performance of hydraulic turbines during the transient stage in which the flow rate is not constant, six hydraulic turbines with different blade numbers are considered. The instantaneous hydraulic performance of the turbine and the pressure pulsation acting on the impeller are investigated numerically by using the ANSYS CFX software. The ensuing results are compared with the outcomes of experimental tests. It is shown that the fluctuation range of the pressure coefficient increases with time, but the corresponding range for the transient hydraulic efficiency decreases gradually when… More >

  • Open AccessOpen Access

    ARTICLE

    Factors Influencing Proppant Transportation and Hydraulic Fracture Conductivity in Deep Coal Methane Reservoirs

    Fan Yang1,2,*, Honggang Mi1,2, Jian Wu1,2, Qi Yang1,2
    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.11, pp. 2637-2656, 2024, DOI:10.32604/fdmp.2024.048574 - 28 October 2024
    Abstract The gas production of deep coalbed methane wells in Linxing-Shenfu block decreases rapidly, the water output is high, the supporting effect is poor, the effective supporting fracture size is limited, and the migration mechanism of proppant in deep coal reservoir is not clear at present. To investigate the migration behavior of proppants in complex fractures during the volume reconstruction of deep coal and rock reservoirs, an optimization test on the conductivity of low-density proppants and simulations of proppant migration in complex fractures of deep coal reservoirs were conducted. The study systematically analyzed the impact of… More >

Per Page:

Share Link