Open Access
ARTICLE
Numerical-Experimental Analysis of the Coal Fracture Formation Mechanism Induced by Liquid CO2 Explosion
1
Shenyang Research Institute, China Coal Technology & Engineering Group Corp., Fushun, 113122, China
2
State Key Laboratory of Coal Mine Safety Technology, Fushun, 113122, China
* Corresponding Author: Yun Lei. Email:
Fluid Dynamics & Materials Processing 2023, 19(12), 3021-3032. https://doi.org/10.32604/fdmp.2023.029570
Received 27 February 2023; Accepted 05 May 2023; Issue published 27 October 2023
Abstract
The highly inefficient simultaneous extraction of coal and gas from low-permeability and high-gas coal seams in deep mines is a major problem often restricting the sustainable development of coal industry. A possible way to solve this problem under deep and complex geological conditions is represented by the technology based on the phase-change induced explosion of liquid carbon dioxide. In this work, the mechanism of formation of the coal mass fracture circle resulting from the gas cracking process is theoretically analyzed. Numerical simulations show that a blasting crushing zone with a radius of 1.0 m is formed around the blasting hole. The radius of the secondary expansion zone caused by the exploding gas is 2.0 m, and the extension limit of the explosion fracture is 2.3 m. The gas phase change explosion is influenced by the coal roadway driving face, the gas content index and the analytical index of coal shavings. Experiments conducted for comparison also lead to the conclusion that the initial gas emission is increased by 3.7 times from the 100-meter borehole in the original coal mass after coalbed gas explosion anti-reflection.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.