Home / Journals / FDMP / Vol.19, No.12, 2023
Special Issues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    Design and Fluid-Dynamic Analysis of a Flushing Nozzle for Drilling Applications

    Zhongshuai Chen1,2, Hongjian Ni1,*, Xueliang Pei2, Yu Gao3
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 2953-2963, 2023, DOI:10.32604/fdmp.2023.029491 - 27 October 2023
    (This article belongs to the Special Issue: High Pressure Jet Theory and its Applications)
    Abstract The actuator is a key component of the creaming tool in drilling applications. Its jet performances determine the effective reaming efficiency. In this work, a new selective reaming tool is proposed and the RNG k-ε turbulence model is used to calculate its internal and external flow fields. In particular, special attention is paid to the design of the flushing nozzle. The results show that the jet originating from the flushing nozzle has a significant influence on rock cutting and blade cooling effects. In turn, the jet performances depend on geometric structure of the creaming actuator. More >

  • Open AccessOpen Access

    ARTICLE

    Numerical Analysis of Flow-Induced Vibration and Noise Generation in a Variable Cross-Section Channel

    Youhao Wang1, Chuntian Zhe1, Chang Guo2, Jinpeng Li3, Jinheng Li3, Shen Cheng2, Zitian Wu1, Suoying He1, Ming Gao1,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 2965-2980, 2023, DOI:10.32604/fdmp.2023.029292 - 27 October 2023
    (This article belongs to the Special Issue: Advances in Thermodynamic System and Energy Conservation Technology)
    Abstract Flow channels with a variable cross-section are important components of piping system and are widely used in various fields of engineering. Using a finite element method and modal analysis theory, flow-induced noise, mode shapes, and structure-borne noise in such systems are investigated in this study. The results demonstrate that the maximum displacement and equivalent stress are located in the part with variable cross-sectional area. The average excitation force on the flow channel wall increases with the flow velocity. The maximum excitation force occurs in the range of 0–20 Hz, and then it decreases gradually in More >

  • Open AccessOpen Access

    ARTICLE

    Simulation of Moving Bed Erosion Based on the Weakly Compressible Smoothed Particle Hydrodynamics-Discrete Element Coupling Method

    Qingyun Zeng1,2, Mingxin Zheng1,*, Dan Huang2
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 2981-3005, 2023, DOI:10.32604/fdmp.2023.029427 - 27 October 2023
    (This article belongs to the Special Issue: CFD Modeling and Multiphase Flows)
    Abstract A complex interface exists between water flow and solid particles during hydraulic soil erosion. In this study, the particle discrete element method (DEM) has been used to simulate the hydraulic erosion of a granular soil under moving bed conditions and surrounding terrain changes. Moreover, the weakly compressible smoothed particle hydrodynamics (WCSPH) approach has been exploited to simulate the instability process of the free surface fluid and its propagation characteristics at the solid–liquid interface. The influence of a suspended medium on the water flow dynamics has been characterized using the mixed viscosity concept accounting for the More >

    Graphic Abstract

    Simulation of Moving Bed Erosion Based on the Weakly Compressible Smoothed Particle Hydrodynamics-Discrete Element Coupling Method

  • Open AccessOpen Access

    ARTICLE

    A Machine-Learning Approach for the Prediction of Fly-Ash Concrete Strength

    Shanqing Shao1, Aimin Gong1, Ran Wang1, Xiaoshuang Chen1, Jing Xu2, Fulai Wang1,*, Feipeng Liu2,3,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 3007-3019, 2023, DOI:10.32604/fdmp.2023.029545 - 27 October 2023
    (This article belongs to the Special Issue: Advances in Solid Waste Processing and Recycling Technologies for Civil Engineering Materials)
    Abstract The composite exciter and the CaO to Na2SO4 dosing ratios are known to have a strong impact on the mechanical strength of fly-ash concrete. In the present study a hybrid approach relying on experiments and a machine-learning technique has been used to tackle this problem. The tests have shown that the optimal admixture of CaO and Na2SO4 alone is 8%. The best 3D mechanical strength of fly-ash concrete is achieved at 8% of the compound activator; If the 28-day mechanical strength is considered, then, the best performances are obtained at 4% of the compound activator. Moreover,… More >

  • Open AccessOpen Access

    ARTICLE

    Numerical-Experimental Analysis of the Coal Fracture Formation Mechanism Induced by Liquid CO2 Explosion

    Yun Lei1,2,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 3021-3032, 2023, DOI:10.32604/fdmp.2023.029570 - 27 October 2023
    Abstract The highly inefficient simultaneous extraction of coal and gas from low-permeability and high-gas coal seams in deep mines is a major problem often restricting the sustainable development of coal industry. A possible way to solve this problem under deep and complex geological conditions is represented by the technology based on the phase-change induced explosion of liquid carbon dioxide. In this work, the mechanism of formation of the coal mass fracture circle resulting from the gas cracking process is theoretically analyzed. Numerical simulations show that a blasting crushing zone with a radius of 1.0 m is More >

  • Open AccessOpen Access

    ARTICLE

    Influence of the Blade Bifurcated Tip on the Correlation between Wind Turbine Wheel Vibration and Aerodynamic Noise

    Baohua Li1, Yuanjun Dai1,2,*, Jingan Cui1, Cong Wang1, Kunju Shi1
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 3033-3043, 2023, DOI:10.32604/fdmp.2023.029583 - 27 October 2023
    Abstract To reduce the vibration and aerodynamic noise of wind turbines, a new design is proposed relying on a blade with a bifurcated apex or tip. The performances of this wind turbine wheel are tested at the entrance of a DC (directaction) wind tunnel for different blade tip angles and varying centrifugal force and aerodynamic loads. The test results indicate that the bifurcated apex can reduce the vibration acceleration amplitude and the vibration frequency of the wind wheel. At the same time, the bifurcated apex can lower the maximum sound pressure level corresponding to the rotating More >

  • Open AccessOpen Access

    ARTICLE

    Optimal Concentration of the Bubble Drainage Agent in Foam Drainage Gas Recovery Applications

    Shaopeng Liu1, Guowei Wang2,3,*, Pengfei Liu1, Dong Ye1, Jian Song1, Xing Liu1, Yang Cheng2,3
    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 3045-3058, 2023, DOI:10.32604/fdmp.2023.029810 - 27 October 2023
    Abstract Foam drainage is the flow of liquid through the interstitial spaces between bubbles driven by capillarity and gravity and resisted by viscous damping. The so-called foam drainage gas recovery technology is a technique traditionally used to mitigate the serious bottom-hole liquid loading in the middle and late stages of gas well production. In this context, determining the optimal concentration of the bubble drainage agent is generally crucial for the proper application of this method. In this study, a combination of indoor experiments and theoretical analysis have been used to determine the pressure drop related to… More >

Per Page:

Share Link