Home / Journals / FDMP / Vol.16, No.2, 2020
Table of Content
  • Open AccessOpen Access

    ARTICLE

    MHD Flow and Nonlinear Thermal Radiative Heat Transfer of Dusty Prandtl Fluid over a Stretching Sheet

    K. Ganesh Kumar1, *, S. Manjunatha2, N. G. Rudraswamy3
    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 131-146, 2020, DOI:10.32604/fdmp.2020.0152
    Abstract Boundary layer flows and melting heat transfer of a Prandtl fluid over a stretching surface in the presence of fluid particle suspensions has been investigated. The converted set of boundary layer equations are solved numerically by RKF-45 method. Obtained numerical results for flow and heat transfer characteristics are deliberated for various physical parameters. Furthermore, the skin friction coefficient and Nusselt number are also presented in Tabs. 2 and 3. It is found that the heat transfer rates are advanced in occurrence of nonlinear radiation compered to linear radiation. Also, it is noticed that velocity and temperature profile increases by increasing… More >

  • Open AccessOpen Access

    ARTICLE

    Pressure-Driven Gas Flows in Micro Channels with a Slip Boundary: A Numerical Investigation

    A. Aissa1, *, M. E. A. Slimani2, F. Mebarek-Oudina3, R. Fares1, A. Zaim1, L. Kolsi4, 5, M. Sahnoun1, M. E. Ganaoui6
    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 147-159, 2020, DOI:10.32604/fdmp.2020.04073
    Abstract In this paper, flow of slightly rarefied compressible nitrogen in microchannels has been investigated numerically for low values of Reynolds and Mach numbers. The 2D governing equations were solved using Finite Element Method with first-order slip boundary conditions (Comsol Multiphysics software). A validation was performed by comparing with similar configuration from the literature. It was found that our model can accurately predict the pressure driven flow in microchannels. Several interesting findings are reported about the Relative pressure, longitudinal velocity, Mach number, effect of gas rarefaction and flow rate. More >

  • Open AccessOpen Access

    ARTICLE

    Influence of Tip Clearance on Unsteady Flow in Automobile Engine Pump

    Jiacheng Dai1, Jiegang Mou1, *, Tao Liu1
    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 161-179, 2020, DOI:10.32604/fdmp.2020.06613
    Abstract The automobile engine pump is an important part of the automobile cooling system, and has a direct influence on the engine performance. Based on the SST k-ω turbulence model, unsteady numerical simulation for an automobile engine pump with different tip clearances was carried out by Fluent. To study the flow field characteristics and pressure fluctuation, the characteristics of secondary flow distribution in volute are also analyzed. The result shows that the pressure fluctuation characteristics of the flow field show obvious periodic variation at different levels of tip clearances. The peak value of pressure fluctuation at each monitoring point is dependent… More >

  • Open AccessOpen Access

    ARTICLE

    Analysis of the Influence of Viscosity and Thermal Conductivity on Heat Transfer by Al2O3-Water Nanofluid

    Houda Jalali1, ∗, Hassan Abbassi1
    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 181-198, 2020, DOI:10.32604/fdmp.2020.07804
    Abstract The addition of nanoparticles into liquid, even at low concentrations, leads to an increase in both, dynamic viscosity and thermal conductivity. Furthermore, the increase in temperature causes an increase in thermal conductivity and a decrease in the nanofluid viscosity. In this context, a numerical investigation of the competition between viscosity and thermal conductivity about their effects on heat transfer by Al2O3-water nanofluid was conducted. A numerical study of heat transfer in a square cavity, filled with Al2O3-water nanofluid and heated from the left side, was presented in this paper. Continuity, momentum, and thermal energy equations are solved by the finite… More >

  • Open AccessOpen Access

    ARTICLE

    Fluid Flow and Convective Heat Transfer in a Water Chemical Condenser

    Mounir Kriraa1,2,*, Khalid Souhar3, Driss Achemlal4, Youssef Ait Yassine5,6, Abdelmajid Farchi1
    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 199-209, 2020, DOI:10.32604/fdmp.2020.07986
    Abstract In this paper, a detailed investigation of water (Pr ¼ 7:0) convection in a chemical condenser is carried out. Two openings are located along one side of the cavity. The Navier-Stokes equations are solved in the frame of a control volume method using the SIMPLEC algorithm to implement adequate coupling of pressure and velocity. Special emphasis is given to the influence of the Reynolds number, the tilt of the channel and the Rayleigh number on the convective heat transfer. Results are presented and discussed allowing the control parameters to span relatively wide intervals: Rayleigh number (104 ≤ Ra ≤ 5… More >

  • Open AccessOpen Access

    ARTICLE

    Design and Experiment-Based Optimization of High-Flow Hydraulic One-Way Valves

    Lei Liu*, Ping Yu
    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 211-224, 2020, DOI:10.32604/fdmp.2020.08168
    Abstract High-flow hydraulic one-way valves in water pipes are typically used to mitigate conditions, which would otherwise cause vibration and cavitation erosion after long-term operation. To prevent cavitation and enhance the performance of hydraulic one-way valves, in the present work a dedicated experimental study has been conducted. The structural parameters relating to the pilot valve core, the main valve core, and the through-flow section of the considered flow channel have been changed to analyse reverse impact, and cavitation, characteristics. The results show that the control pressure has a weak effect on the cavitation characteristics, while changes in the structural parameters can… More >

  • Open AccessOpen Access

    ARTICLE

    Determination of a Safe Distance for Atomic Hydrogen Depositions in Hot-Wire Chemical Vapour Deposition by Means of CFD Heat Transfer Simulations

    Lionel Fabian Fourie1, Lynndle Square2,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 225-235, 2020, DOI:10.32604/fdmp.2020.08771
    Abstract A heat transfer study was conducted, in the framework of Computational Fluid Dynamics (CFD), on a Hot-Wire Chemical Vapour Deposition (HWCVD) reactor chamber to determine a safe deposition distance for atomic hydrogen produced by HWCVD. The objective of this study was to show the feasibility of using heat transfer simulations in determining a safe deposition distance for deposition of this kind. All CFD simulations were set-up and solved within the framework of the CFD packages of OpenFOAM namely; snappyHexMesh for mesh generation, buoyantSimpleFoam and rhoSimpleFoam as the solvers and paraView as the post-processing tool. Using a standard set of deposition… More >

  • Open AccessOpen Access

    ARTICLE

    An Experimental Investigation about the Levels of PM2.5 and Formaldehyde Pollutants inside an Office

    Xiangli Wang1, Peiyong Ni2,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 237-243, 2020, DOI:10.32604/fdmp.2020.09469
    (This article belongs to this Special Issue: The Progress in Building Indoor Air Quality: Indoor Airflow and Pollutant Control)
    Abstract PM2.5 and formaldehyde are two main indoor pollutants potentially threatening the health of human beings. In this paper, the concentrations of PM2.5 and formaldehyde inside an office were measured under different conditions. The effects of temperature on the formaldehyde originating from the decoration materials, including flooring, gypsum powder, joint mixture and corestock, were also assessed. The results show that window ventilation can produce the same PM2.5 purification as an air cleaner. The concentration of formaldehyde released from the decoration materials is highly correlated to the indoor temperature, but it is not significantly influenced by humidity. In particular, the percentage of… More >

  • Open AccessOpen Access

    ARTICLE

    Numerical Fluid Flow Modelling in Multiple Fractured Porous Reservoirs

    Yatin Suri1, Sheikh Zahidul Islam1, *, Kirsten Stephen1, Cameron Donald1, Michael Thompson1, Mohamad Ghazi Droubi1, Mamdud Hossain1
    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 245-266, 2020, DOI:10.32604/fdmp.2020.06505
    (This article belongs to this Special Issue: CFD Modeling and Multiphase Flows)
    Abstract This paper compares the fluid flow phenomena occurring within a fractured reservoir for three different fracture models using computational fluid dynamics. The effect of the fracture-matrix interface condition is studied on the pressure and velocity distribution. The fracture models were compared based on the variation in pressure and permeability conditions. The model was developed for isotropic and anisotropic permeability conditions. The results suggest that the fracture aperture can have a drastic effect on fluid flow. The porous fracture-matrix interface condition produces more realistic transport of fluids. By increasing the permeability in the isotropic porous matrix, the pressure drop was significantly… More >

  • Open AccessOpen Access

    ARTICLE

    Heat and Mass Transfer Characteristics of Alkali Metals in a Combined Wick of High-Temperature Heat Pipe

    Ping Yu1, *, Chuanhui Huang1, Lei Liu1, Huafeng Guo1, Chengqiang Liu1
    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.2, pp. 267-280, 2020, DOI:10.32604/fdmp.2020.06528
    (This article belongs to this Special Issue: CFD Modeling and Multiphase Flows)
    Abstract To study the heat and mass transfer characteristics of alkali metals in a combined porous wick in high-temperature heat pipes, a three-dimensional (3-D) numerical model is constructed by using the finite volume method, Darcy’s theory, and the theory of local thermal equilibrium. The research finds that the pressure drop of fluids flowing through a combined porous wick exhibits an increasing trend with increasing flow velocity at the inlet and with decreasing permeability of the porous media; a combined porous wick of lower porosity and permeability and larger fluid velocity at the inlet is found to have a less uniformly distributed… More >

Per Page:

Share Link

WeChat scan