Home / Journals / FDMP / Vol.15, No.1, 2019
Special Issues
Table of Content
  • Open AccessOpen Access

    ARTICLE

    A Study on the Optimal Offset Distance Between a Welding Torch and the Infrared Thermometers

    Tae-Jong Yun1, Won-Bin Oh1, Bo-Ram Lee1, Joon-Sik Son2, Ill-soo Kim1,*
    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.1, pp. 1-14, 2019, DOI:10.32604/fdmp.2019.04759
    Abstract Detection of weld defects using real-time monitoring and controlling algorithm is of the significant task in manufacturing industries due to the increased production and liability costs that result when weld defects are not identified early in the production cycle. Monitoring and controlling for robotic arc welding process employed should be reliable, flexible and cost-effective in non-clean, high-volume production environments. Also, the robotic welding system has been utilized a complex jigging and mechanical devices to move the workpiece which related to the stationary welding head for getting higher efficiency and lower costs. To develop the fully… More >

  • Open AccessOpen Access

    ARTICLE

    A Study on Microstructural and Mechanical Properties of a Stir Cast Al (SiC-Mg-TiFe) Composite

    Samuel Olukayode Akinwamide1, Serge Mudinga Lemika1, Babatunde Abiodun Obadele1,3, Ojo Jeremiah Akinribide1, Bolanle Tolulope Abe2, Peter Apata Olubambi1
    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.1, pp. 15-26, 2019, DOI:10.32604/fdmp.2019.04761
    Abstract Development of metal matrix composite is becoming widespread in most engineering applications where excellent mechanical properties are required. Mechanical and microstructural properties of aluminium reinforced with silicon carbide was investigated. Ingot of aluminium was melted in a furnace at temperature ranging between 650-700 ℃. Ferrotitanium and silicon carbide were preheated in a muffle furnace before addition to molten aluminium in a crucible furnace. Fixed proportions of magnesium, ferrotitanium and varying proportions of silicon carbide were utilized as reinforcements. Stirring was carried out manually for a minimum of 10 mins after the addition of each weight More >

  • Open AccessOpen Access

    ARTICLE

    A Study on the Properties of Resin Transfer Molding Cyanate Ester and Its T800 Grade Carbon Fiber Composites

    Qiuren Ou1,2,*, Peijun Ji2, Jun Xiao1, Ling Wu2
    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.1, pp. 27-37, 2019, DOI:10.32604/fdmp.2019.04787
    Abstract The properties of resin transfer molding (RTM) cyanate ester and its T800 grade carbon fiber composites were studied with the rheometer, differential scanning calorimetry (DSC), FT-IR, dynamic mechanical analyzer (DMA), thermal gravimetric analysis (TGA), mechanical property testing, and scanning electron microscopy (SEM). The results showed that the temperature of cyanate ester suitable for RTM process was 70℃. Curing process of the resin was 130℃/2 h+160℃/2 h+200℃/2 h+220℃/4 h. Glass transition temperature and heat decomposition temperature of the cured resin are 289℃ and 415℃, respectively. Mechanical properties of T800/RTM cyanate composites are 13.5% higher than that More >

  • Open AccessOpen Access

    ARTICLE

    A Reasonable Approach for the Development of Shale Gas Wells with Consideration of the Stress Sensitivity

    Jin Pang1,*, Di Luo2, Haohong Gao3, Jie Liang4, Yuanyuan Huang1, Qi Liu3
    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.1, pp. 39-51, 2019, DOI:10.32604/fdmp.2019.06136
    Abstract High-pressure deep shale gas reservoirs are usually highly stress-sensitive. When the reasonable production mode of shale gas well is built, the impact of strong stress sensitivity should be fully considered. First, this study calculated the relationship between permeability and formation pressure under different elastic modulus based on the shale lithology of Long Ma Xi formation in Sichuan Basin by testing and analysing the mechanical parameters of the rock. According to numerical simulation result, when the elastic modulus exceeds 14.0 GPa, the stress sensitivity of the matrix will slight affect the cumulative gas production of shale… More >

  • Open AccessOpen Access

    ARTICLE

    Influence of Ground Stress on Coal Seam Gas Pressure and Gas Content

    Xuebo Zhang1, 2, 3, Zhiwei Jia1, 2, 3, *
    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.1, pp. 53-61, 2019, DOI:10.32604/fdmp.2019.04779
    Abstract The influence of ground stress was quantitatively analyzed on coal seam gas pressure and gas content in this paper. Mining activities in coal mine can result in stress concentration in the coal (rock) body around the mining space, but porosity of the coal seam would not change too much. Therefore, gas pressure and gas content in the coal seam are slightly affected. Studies showed that the free gas was gradually transformed into adsorbed gas, and the gas adsorption volume was small, and then gas pressure increases roughly linearly when the porosity decreased because of stress More >

  • Open AccessOpen Access

    ARTICLE

    A New Model for the Characterization of Frozen Soil and Related Latent Heat Effects for the Improvement of Ground Freezing Techniques and Its Experimental Verification

    Daoming Shen1, Hua Si1,*, Jinhong Xia1, Shunqun Li2
    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.1, pp. 63-76, 2019, DOI:10.32604/fdmp.2019.04799
    Abstract The correct determination of thermal parameters, such as thermal conductivity and specific heat of soil during freezing, is the most important and basic problem for the construction of an appropriate freezing method. In this study, a calculation model of three stages of soil temperature was established. At the unfrozen and frozen stages, the specific temperatures of dry soil, water, and ice are known. According to the principle of superposition, a calculation model of unfrozen and frozen soils can be established. Informed by a laboratory experiment, the latent heat of the adjacent zone was calculated for More >

  • Open AccessOpen Access

    ARTICLE

    Numerical Simulation and Optimization of a Mid-Temperature Heat Pipe Exchanger

    Jun Du1,*, Xin Wu1, Ruonan Li1, Ranran Cheng1
    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.1, pp. 77-87, 2019, DOI:10.32604/fdmp.2019.05949
    Abstract In this paper, we take the mid-temperature gravity heat pipe exchanger as the research object, simulate the fluid flow field, temperature field and the working state of heat pipe in the heat exchanger by Fluent software. The effects of different operating parameters and fin parameters on the heat transfer performance of heat exchangers are studied. The results show that the heat transfer performance of the mid-temperature gravity heat pipe exchanger is the best when the fin spacing is between 5 mm and 6 mm, the height of the heat pipe is between 12 mm and More >

Per Page:

Share Link