Special Issues
Table of Content

Materials and Energy an Updated Image for 2023

Submission Deadline: 30 September 2024 View: 42 Submit to Special Issue

Guest Editors

Dr. B. Morrone, Universita' degli studi della Campania "L. Vanvitelli".
Dr. M. El Ganaoui, University of Lorraine, France.
Dr. R. Bennacer, University of Paris Saclay, France.
Dr. S. Morsli, University of Lorraine, France.
Dr. P. Carillo, University of Campania “Luigi Vanvitelli”.

Summary

The International Conference on Materials and Energy (ICOME) was held in Italy on June 2023 following the earlier successful conferences of the same series held in Metz in 2021, Tunisia in 2019, Spain in 2018, China in 2017, France in 2016 and Morocco in 2015. A significant number of papers presented in the framework of this conference have been selected for publication in the Fluid Dynamics and Material Processing International peer reviewed Journal given the relevance of the treated subjects to the aims and scope of this journal and the high quality of these contributions. Particularly, the foreword provides a critical review of the 2023 conference aims in relation to its potential impact on the fields of Materials and Energy and related societal benefits.


Keywords

Materials, Energy, Heat and Mass Transfers, Modeling, Lattice Boltzmann Methods, Transfers in Microgavity

Published Papers


  • Open Access

    ARTICLE

    Influence of the Ambient Temperature on the Efficiency of Gas Turbines

    Mahdi Goucem
    FDMP-Fluid Dynamics & Materials Processing, DOI:10.32604/fdmp.2024.052365
    (This article belongs to the Special Issue: Materials and Energy an Updated Image for 2023)
    Abstract In hot and arid regions like the Saharan area, effective methods for cooling and humidifying intake air are essential. This study explores the utilization of a water trickle cooler as a promising solution to meet this objective. In particular, the HASSI MESSAOUD area is considered as a testbed. The water trickle cooler is chosen for its adaptability to arid conditions. Modeling results demonstrate its effectiveness in conditioning air before it enters the compressor. The cooling system achieves a significant temperature reduction of 6 to 8 degrees Celsius, enhancing mass flow rate dynamics by 3 percent More >

  • Open Access

    ARTICLE

    Production and Characterization of a Composite Based on Plaster and Juncus Maritimus Plant Fibers

    Mina Amazal, Soumia Mounir, Asma Souidi, Malika Atigui, Slimane Oubeddou, Youssef Maaloufa, Ahmed Aharoune
    FDMP-Fluid Dynamics & Materials Processing, DOI:10.32604/fdmp.2024.050613
    (This article belongs to the Special Issue: Materials and Energy an Updated Image for 2023)
    Abstract Nowadays, materials with a limited impact on the environment are required in the construction sector. Considering the interesting properties of natural elements such as natural fibers, it seems advantageous to use them to reinforce materials while protecting the environment and guaranteeing economic gain. Along these lines, this research was devoted to studying the effect of untreated natural fibers extracted from the Juncus maritimus plant (from Southern Morocco) on plaster. First, the effect of the percentage of added fibers on the fluidity of the plaster was evaluated by means of the Marsh’s cone method, that is,… More >

  • Open Access

    ARTICLE

    Natural Convection of a Power-Law Nanofluid in a Square Cavity with a Vertical Fin

    Amira M’hadbi, Mohammed El Ganaoui, Haïkel Ben Hamed, Amenallah Guizani, Khalid Chtaibi
    FDMP-Fluid Dynamics & Materials Processing, DOI:10.32604/fdmp.2024.050763
    (This article belongs to the Special Issue: Materials and Energy an Updated Image for 2023)
    Abstract The behavior of non-Newtonian power-law nanofluids under free convection heat transfer conditions in a cooled square enclosure equipped with a heated fin is investigated numerically. In particular, the impact of nanofluids, composed of water and Al₂O₃, TiO₂, and Cu nanoparticles, on heat transfer enhancement is examined. The aim of this research is also to analyze the influence of different parameters, including the Rayleigh number (Ra = 10 − 10), nanoparticle volume fraction (φ = 0% − 20%), non-Newtonian power-law indexes (n = 0.6 − 1.4), and fin dimensions (Ar = 0.3, 0.5, and 0.7). Streamlines and isotherms are used… More >

  • Open Access

    ARTICLE

    Energy Design and Optimization of Greenhouse by Natural Convection

    H. Benzzine, H. Labrim, Aouatif Saad, Y. Achour, D. Zejli, R. El Bouayadi
    FDMP-Fluid Dynamics & Materials Processing, DOI:10.32604/fdmp.2024.050557
    (This article belongs to the Special Issue: Materials and Energy an Updated Image for 2023)
    Abstract This study addresses the pressing need for energy-efficient greenhouse management by focusing on the innovative application of natural ventilation. The primary objective of this study is to evaluate various ventilation strategies to enhance energy efficiency and optimize crop production in agricultural greenhouses. Employing advanced numerical simulation tools, the study conducts a comprehensive assessment of natural ventilation’s effectiveness under real-world conditions. The results underscore the crucial role of the stack effect and strategic window positioning in greenhouse cooling, providing valuable insights for greenhouse designers. Our findings shed light on the significant benefits of optimized ventilation and More >

  • Open Access

    ARTICLE

    Impact of Varying Blower Opening Degrees on Indoor Environment and Thermal Comfort

    Shengqiang Shi, Abdelatif Merabtine, Rachid Bennacer, Julien Kauffmann
    FDMP-Fluid Dynamics & Materials Processing, DOI:10.32604/fdmp.2024.050547
    (This article belongs to the Special Issue: Materials and Energy an Updated Image for 2023)
    Abstract At present, air handling units are usually used indoors to improve the indoor environment quality. However, while introducing fresh air to improve air quality, air velocity has a certain impact on the occupants’ thermal comfort. Therefore, it is necessary to explore the optimization of air-fluid-body interaction dynamics. In this study, the indoor air flow was changed by changing the opening and closing degree of the blower, and the thermal manikin is introduced to objectively evaluate the human thermal comfort under different air velocities. The main experimental results show that the air change rate increases with… More >

Share Link