Special Issue "EFD and Heat Transfer II"

Submission Deadline: 15 June 2020 (closed)
Guest Editors
Dr. Zhigang Fang, Wuhan University of Technology, China

Summary

This special issue is devoted to the discussion of recent developments and applications of EFD and heat transfer. Fluid mechanics is a discipline based on potential flow equations, Euler equations, and Navier-Stokes equations, the development of computer provides theoretical and experimental verification basis for engineering fluid mechanics, and EFD is widely used in the design of aircraft and fluid machinery. Heat transfer studies the transmission patterns of heat energy caused by temperature difference. As theoretical and experimental research continue to close its gaps with production and life, microscale heat transfer, phase change of biological heat transfer, multiphase flow heat transfer, low-temperature heat transfer, and many other interdisciplinary studies and subdisciplines were derived therefrom. In recent years, with the development of micromachining and the growing demand for miniaturization of industrial products, microscale heat transfer has become a hot topic in the research of engineering thermophysics. Related professional experts, researchers, graduate students are welcome to join us in the following topics: 

1) Aerodynamics, such as aircraft wing design, automotive body design;
2) Fluid-solid coupling analysis;
3) Thermodynamics and heat transfer, such as thermal analysis during engine combustion;
4) Postprocessing and model validation, including Statistical Learning and Uncertainty Quantification;
5) Fluid theory method, such as Navier-Stokes equations. 



Keywords
EFD, Heat Transfer, Thermodynamics, Combustion, Aerodynamics.

Published Papers

  • Optimization of a Heat Exchanger Using an ARM Core Intelligent Algorithm
  • Abstract In order to optimize heat transfer in a heat exchanger using an ARM (advanced RISC machine) core intelligent computer algorithm, a new type of controller has been designed. The whole control structure of the heat exchange unit has been conceived on the basis of seven functional modules, including data processing and output, human-computer interaction, alarm, and data communication. The main controller and communication controller have been used in a combined fashion and a new MCU (micro control unit) system scheme has been proposed accordingly. A fuzzy controller has been designed by using a fuzzy control algorithm, and a new mode… More
  •   Views:226       Downloads:142        Download PDF

  • A Numerical Study of the Tip Wake of a Wind Turbine Impeller Using Extended Proper Orthogonal Decomposition
  • Abstract The behavior of the tip wake of a wind turbine is one of the hot issues in the wind power field. This problem can partially be tackled using Computational Fluid Dynamics (CFD). However, this approach lacks the ability to provide insights into the spatial structure of important high-order flows. Therefore, with the horizontal axis wind turbine as the main focus, in this work, firstly, we conduct CFD simulations of the wind turbine in order to obtain a data-driven basis relating to multiple working conditions for further analysis. Then, these data are studied using an extended Proper Orthogonal Decomposition (POD) algorithm.… More
  •   Views:287       Downloads:183        Download PDF

  • On the Application of the Lattice Boltzmann Method to Predict Soil Meso Seepage Characteristics
  • Abstract In this study, a two-dimensional approach is elaborated to study with the lattice Boltzmann method (LBM) the seepage of water in the pores of a soil. Firstly, the D2Q9 model is selected to account for the discrete velocity distribution of water flow. In particular, impermeability is considered as macroscopic boundary condition for the left and right domain sides, while the upper and lower boundaries are assumed to behave as pressure boundaries controlled by different densities. The micro-boundary conditions are implemented through the standard rebound strategy and a non-equilibrium extrapolation scheme. Matlab is used for the development of the related algorithm.… More
  •   Views:210       Downloads:141        Download PDF


  • Development of an Artificial Fish Swarm Algorithm Based on a Wireless Sensor Networks in a Hydrodynamic Background
  • Abstract The main objective of the present study is the development of a new algorithm that can adapt to complex and changeable environments. An artificial fish swarm algorithm is developed which relies on a wireless sensor network (WSN) in a hydrodynamic background. The nodes of this algorithm are viscous fluids and artificial fish, while related ‘events’ are directly connected to the food available in the related virtual environment. The results show that the total processing time of the data by the source node is 6.661 ms, of which the processing time of crosstalk data is 3.789 ms, accounting for 56.89%. The… More
  •   Views:216       Downloads:149        Download PDF

  • A Combined Experimental and Numerical Study of Shotcrete Jets and Related Wet Spray Nozzles
  • Abstract In this research, the dynamics of wet spray nozzles with different geometries, used to accelerate shotcrete, are investigated on the basis of a suitable three-dimensional mathematical model and related numerical method. Simulations have been conducted in the frame of the SIMPLEC algorithm. The k-ε turbulence model has been used to account for turbulent effects. The study shows that when the angle of the convergent section is less than 3°, it has a scarce effect on the dynamics of the jet of shotcrete; with the increase of the convergence angle, the shotcrete jet velocity decreases and the nozzle wear increases; when… More
  •   Views:229       Downloads:154        Download PDF

  • An Investigation into the Influence of the Airflow Path on the Convective Heat Transfer for an Eddy Current Retarder Turntable
  • Abstract In order to improve the convective heat transfer relating to an eddy current retarder, the finite element model has been used to assess the performances of different possible designs. In particular, assuming the steady running state of retarder as the working condition, flow and temperature fields have been obtained for the rotor. The influence of airflow path on heat dissipation has been analysed, and the influence of the temperature field distribution on the performance of retarder has been discussed accordingly. The results show that when the steady running state of the turntable is considered, the maximum temperature is lower, the… More
  •   Views:239       Downloads:159        Download PDF

  • A Novel Approach for the Numerical Simulation of Fluid-Structure Interaction Problems in the Presence of Debris
  • Abstract A novel algorithm is proposed for the simulation of fluid-structure interaction problems. In particular, much attention is paid to natural phenomena such as debris flow. The fluid part (debris flow fluid) is simulated in the framework of the smoothed particle hydrodynamics (SPH) approach, while the solid part (downstream obstacles) is treated using the finite element method (FEM). Fluid-structure coupling is implemented through dynamic boundary conditions. In particular, the software “TensorFlow” and an algorithm based on Python are combined to conduct the required calculations. The simulation results show that the dynamics of viscous and non-viscous debris flows can be extremely different… More
  •   Views:267       Downloads:168        Download PDF

  • Analysis of Gas-Solid Flow Characteristics in a Spouted Fluidized Bed Dryer by Means of Computational Particle Fluid Dynamics
  • Abstract In order to grasp the particle flow characteristics and energy consumption of industrial fluidized spouted beds, we conduct numerical simulations on the basis of a Computational Particle Fluid Dynamics (CPFD) approach. In particular, the traction model of Wen-Yu-Ergun is used and different inlet conditions are considered. Using a low-speed fluidizing gas, the flow state of the particles is better and the amount of particles accumulated at the bottom of the bed wall becomes smaller. For the same air intake, the energy loss of a circular nozzle is larger than that of a square nozzle. More
  •   Views:622       Downloads:452        Download PDF

  • Large Eddy Simulation of Gasoline-Air Mixture Explosion in Long Duct with Branch Structure
  • Abstract Gas explosion is a process involving complex hydrodynamics and chemical reactions. In order to investigate the interaction between the flame behavior and the dynamic overpressure resulting from the explosion of a premixed gasoline-air mixture in a confined space, a large eddy simulation (LES) strategy coupled with sub-grid combustion model has been implemented. The considered confined space consists of a long duct and four branches symmetrically distributed on both sides of the long duct. Comparisons between the simulated and experimental results have been considered with regard to the flame structure, flame speed and overpressure characteristics. It is shown that the explosion… More
  •   Views:1110       Downloads:772        Download PDF

  • Simulation of the Thermal Environment and Velocity Distribution in a Lecture Hall
  • Abstract The rational design of heating ventilation and air conditioning systems is an important means to achieve energy conservation and sustainable development. The simulation of air-conditioning systems with finite element methods has gradually become an important auxiliary means of complex airspace design. In this paper, a k-ε turbulence model is used to conduct 3D simulations and optimize the summer air conditioning system of a lecture hall. Various conditions are considered in terms of fresh air temperature and flow rate towards the end to improve comfort. The approach used in this paper could also be used in the future as an auxiliary… More
  •   Views:1123       Downloads:745        Download PDF

  • RANS Simulation for the Maneuvering and Control of a Suboff Submarine Model
  • Abstract Submarine maneuverability has been analyzed by means of computational fluid dynamics (CFD). This approach provides an alternative, accurate, and cost-effective method for simulating actual flow. The numerical results show that the numerical simulation of the viscous flow related to a moving submarine based on the RANS equation with a relevant turbulence model can not only provide rich flow field details such as flow separation, but also accurately predict its hydrodynamic performance. The present study indicates that CFD can be used to forecast the submarine’s maneuverability in the initial design stage. The present results will be used in the future as… More
  •   Views:1094       Downloads:742        Download PDF