Special lssues
Table of Content

Meshless, Mesh-Based and Mesh-Reduction Methods Based Analysis of Fluid Flow in Porous Media II

Submission Deadline: 31 August 2023 (closed)

Guest Editors

Dr. Yunfeng Xu, Yangtze University, China.
Dr. Xiang Rao, Yangtze University, China.
Dr. Zhipeng Wang, China University of Petroleum (Beijing), China.

Summary

Grid-based finite difference method, finite element method and finite volume method are widely used to solve various flow problems in porous media, and have always been the mainstream methods in the field of numerical calculation from the past to the present. For some complex flow scenarios, the grid-based method has great difficulties in generating high-quality mesh. Under this background, meshless methods came into being and developed rapidly. In recent years, there have also been some theoretical and application research on meshless methods. The meshless method breaks through the limitation of the traditional numerical methods based on mesh division, and has theoretical advantages in high-speed impact, dynamic crack propagation, fluid-solid coupling and other problems related to large deformation, mesh distortion, adaptive analysis, etc. However, up to now, this method still does not occupy enough shares in the field of numerical calculation of flow problems. In addition, this special issue also focuses on the application effect and performance analysis of other mesh-reduction methods (such as boundary element method, point source function method, multiscale methods, order-reduction methods and etc.) in various fluid flow problems in porous media.

In all, this special issue aims to analyze the following issues but not limited to these issues:

(1) Computational performances, limitations and advantages of meshless methods;

(2) Computational performances, limitations and advantages of mesh-based methods;

(3) Computational performances, limitations and advantages of mesh-reduction methods;

(4) key factors affecting the accuracy of these methods;

(5) Does meshless methods have an advantage in calculation accuracy and efficiency compared with mesh-based methods?

(6) The differences of computing performance when various meshless methods are applied.


Keywords

Flow in porous media; meshless methods; mesh-reduction method; reservoirs numerical simulation

Share Link