Open Access iconOpen Access

ARTICLE

crossmark

Low-Carbon Dispatch of an Integrated Energy System Considering Confidence Intervals for Renewable Energy Generation

by Yan Shi1, Wenjie Li1, Gongbo Fan2,*, Luxi Zhang1, Fengjiu Yang1

1 Power Supply Service Supervision and Support Center, East Inner Mongolia Electric Power Co., Ltd., Tongliao, 028000, China
2 School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, 102206, China

* Corresponding Author: Gongbo Fan. Email: email

(This article belongs to the Special Issue: Key Technologies of Renewable Energy Consumption and Optimal Operation under )

Energy Engineering 2024, 121(2), 461-482. https://doi.org/10.32604/ee.2023.043835

Abstract

Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation, this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side. A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation, with the overarching goal of optimizing the system for low-carbon operation. To begin with, an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation mechanisms exhibited by the source-side carbon capture power plant within the context of integrated and adaptable operational paradigms. Drawing from this analysis, a model is devised to represent the adjustable resources on the charge-storage side, predicated on the principles of electro-thermal coupling within the energy system. Subsequently, the dissimilarities in the confidence intervals of renewable energy generation are considered, leading to the proposition of a flexible upper threshold for the confidence interval. Building on this, a low-carbon dispatch model is established for the integrated energy system, factoring in the margin allowed by the adjustable resources. In the final phase, a simulation is performed on a regional electric heating integrated energy system. This simulation seeks to assess the impact of source-load-storage coordination on the system's low-carbon operation across various scenarios of reduction margin reserves. The findings underscore that the proactive scheduling model incorporating confidence interval considerations for reduction margin reserves effectively mitigates the uncertainties tied to renewable energy generation. Through harmonized orchestration of source, load, and storage elements, it expands the utilization scope for renewable energy, safeguards the economic efficiency of system operations under low-carbon emission conditions, and empirically validates the soundness and efficacy of the proposed approach.

Keywords


Cite This Article

APA Style
Shi, Y., Li, W., Fan, G., Zhang, L., Yang, F. (2024). Low-carbon dispatch of an integrated energy system considering confidence intervals for renewable energy generation. Energy Engineering, 121(2), 461-482. https://doi.org/10.32604/ee.2023.043835
Vancouver Style
Shi Y, Li W, Fan G, Zhang L, Yang F. Low-carbon dispatch of an integrated energy system considering confidence intervals for renewable energy generation. Energ Eng. 2024;121(2):461-482 https://doi.org/10.32604/ee.2023.043835
IEEE Style
Y. Shi, W. Li, G. Fan, L. Zhang, and F. Yang, “Low-Carbon Dispatch of an Integrated Energy System Considering Confidence Intervals for Renewable Energy Generation,” Energ. Eng., vol. 121, no. 2, pp. 461-482, 2024. https://doi.org/10.32604/ee.2023.043835



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 616

    View

  • 319

    Download

  • 0

    Like

Share Link