Open Access iconOpen Access

ARTICLE

crossmark

Hydrogen Permeation Characteristics of Pd-Cu Membrane in Plasma Membrane Reactor

by Muhd Hadi Iskandar Abd Razak*, Motoki Tsuda, Yukio Hayakawa, Shinji Kambara

Graduate School of Engineering, Gifu University, Gifu, 501-1193, Japan

* Corresponding Author: Muhd Hadi Iskandar Abd Razak. Email: email-u.ac.jp

Energy Engineering 2024, 121(2), 259-272. https://doi.org/10.32604/ee.2023.043615

Abstract

Hydrogen is an alternative energy source that has the potential to replace fossil fuels. One of the hydrogen applications is as a material for Polymer Electrolyte Membrane Fuel Cells (PEMFC) in fuel cell vehicles. High-purity hydrogen can be obtained using a hydrogen separation membrane to prevent unwanted contaminants from potentially harming the PEMFC components. In this study, we fabricated a plasma membrane reactor and investigated the permeation performance of a hydrogen separation membrane in a plasma membrane reactor utilizing atmospheric pressure plasma. The result showed the hydrogen permeation rate increasing with time as reactor temperature is increased through joule heating. By decreasing the gap length of the reactor from 2 to 1 mm, the hydrogen permeation rate increases by up to 40%. The hydrogen permeation rate increases by 30% when pressure is applied to the plasma membrane reactor by up to 100 kPa.

Keywords


Cite This Article

APA Style
Abd Razak, M.H.I., Tsuda, M., Hayakawa, Y., Kambara, S. (2024). Hydrogen permeation characteristics of pd-cu membrane in plasma membrane reactor. Energy Engineering, 121(2), 259-272. https://doi.org/10.32604/ee.2023.043615
Vancouver Style
Abd Razak MHI, Tsuda M, Hayakawa Y, Kambara S. Hydrogen permeation characteristics of pd-cu membrane in plasma membrane reactor. Energ Eng. 2024;121(2):259-272 https://doi.org/10.32604/ee.2023.043615
IEEE Style
M. H. I. Abd Razak, M. Tsuda, Y. Hayakawa, and S. Kambara, “Hydrogen Permeation Characteristics of Pd-Cu Membrane in Plasma Membrane Reactor,” Energ. Eng., vol. 121, no. 2, pp. 259-272, 2024. https://doi.org/10.32604/ee.2023.043615



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 810

    View

  • 401

    Download

  • 0

    Like

Share Link