Open Access iconOpen Access

ARTICLE

crossmark

Optimal Location and Sizing of Multi-Resource Distributed Generator Based on Multi-Objective Artificial Bee Colony Algorithm

Qiangfei Cao1, Huilai Wang2, Zijia Hui1, Lingyun Chen2,*

1 Economic and Technological Research Institute, State Grid Shanxi Electric Power Co., Ltd., Xi’an, 710075, China
2 Central Southern China Electric Power Design Institute Co., Ltd., China Power Engineering Consulting Group, Wuhan, 430074, China

* Corresponding Author: Lingyun Chen. Email: email

(This article belongs to the Special Issue: Key Technologies of Renewable Energy Consumption and Optimal Operation under )

Energy Engineering 2024, 121(2), 499-521. https://doi.org/10.32604/ee.2023.042702

Abstract

Distribution generation (DG) technology based on a variety of renewable energy technologies has developed rapidly. A large number of multi-type DG are connected to the distribution network (DN), resulting in a decline in the stability of DN operation. It is urgent to find a method that can effectively connect multi-energy DG to DN. photovoltaic (PV), wind power generation (WPG), fuel cell (FC), and micro gas turbine (MGT) are considered in this paper. A multi-objective optimization model was established based on the life cycle cost (LCC) of DG, voltage quality, voltage fluctuation, system network loss, power deviation of the tie-line, DG pollution emission index, and meteorological index weight of DN. Multi-objective artificial bee colony algorithm (MOABC) was used to determine the optimal location and capacity of the four kinds of DG access DN, and compared with the other three heuristic algorithms. Simulation tests based on IEEE 33 test node and IEEE 69 test node show that in IEEE 33 test node, the total voltage deviation, voltage fluctuation, and system network loss of DN decreased by 49.67%, 7.47% and 48.12%, respectively, compared with that without DG configuration. In the IEEE 69 test node, the total voltage deviation, voltage fluctuation and system network loss of DN in the MOABC configuration scheme decreased by 54.98%, 35.93% and 75.17%, respectively, compared with that without DG configuration, indicating that MOABC can reasonably plan the capacity and location of DG. Achieve the maximum trade-off between DG economy and DN operation stability.

Keywords


Cite This Article

APA Style
Cao, Q., Wang, H., Hui, Z., Chen, L. (2024). Optimal location and sizing of multi-resource distributed generator based on multi-objective artificial bee colony algorithm. Energy Engineering, 121(2), 499-521. https://doi.org/10.32604/ee.2023.042702
Vancouver Style
Cao Q, Wang H, Hui Z, Chen L. Optimal location and sizing of multi-resource distributed generator based on multi-objective artificial bee colony algorithm. Energ Eng. 2024;121(2):499-521 https://doi.org/10.32604/ee.2023.042702
IEEE Style
Q. Cao, H. Wang, Z. Hui, and L. Chen, “Optimal Location and Sizing of Multi-Resource Distributed Generator Based on Multi-Objective Artificial Bee Colony Algorithm,” Energ. Eng., vol. 121, no. 2, pp. 499-521, 2024. https://doi.org/10.32604/ee.2023.042702



cc Copyright © 2024 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 555

    View

  • 426

    Download

  • 0

    Like

Share Link