Open Access iconOpen Access

ARTICLE

crossmark

Short-Term Prediction of Photovoltaic Power Generation Based on LMD Permutation Entropy and Singular Spectrum Analysis

Wenchao Ma*

School of Locomotive and Vehicle Engineering, Zhengzhou University of Railway Engineering, Zhengzhou, 450000, China

* Corresponding Author: Wenchao Ma. Email: email

Energy Engineering 2023, 120(7), 1685-1699. https://doi.org/10.32604/ee.2023.025404

Abstract

The power output state of photovoltaic power generation is affected by the earth's rotation and solar radiation intensity. On the one hand, its output sequence has daily periodicity; on the other hand, it has discrete randomness. With the development of new energy economy, the proportion of photovoltaic energy increased accordingly. In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation, this paper proposes the short-term prediction of photovoltaic power generation based on the improved multi-scale permutation entropy, local mean decomposition and singular spectrum analysis algorithm. Firstly, taking the power output per unit day as the research object, the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions, and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy, sunny, abrupt, cloudy. Then, local mean decomposition (LMD) is used to decompose the output sequence, so as to extract more detail components of the reconstructed output sequence. Finally, combined with the weather forecast of the Meteorological Bureau for the next day, the singular spectrum analysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather. Through the verification and analysis of examples, the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared. The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator, and has the advantages of simple structure and high prediction accuracy.

Keywords


Cite This Article

APA Style
Ma, W. (2023). Short-term prediction of photovoltaic power generation based on LMD permutation entropy and singular spectrum analysis. Energy Engineering, 120(7), 1685-1699. https://doi.org/10.32604/ee.2023.025404
Vancouver Style
Ma W. Short-term prediction of photovoltaic power generation based on LMD permutation entropy and singular spectrum analysis. Energ Eng. 2023;120(7):1685-1699 https://doi.org/10.32604/ee.2023.025404
IEEE Style
W. Ma, “Short-Term Prediction of Photovoltaic Power Generation Based on LMD Permutation Entropy and Singular Spectrum Analysis,” Energ. Eng., vol. 120, no. 7, pp. 1685-1699, 2023. https://doi.org/10.32604/ee.2023.025404



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1008

    View

  • 577

    Download

  • 0

    Like

Share Link