Open Access iconOpen Access

ARTICLE

crossmark

Revolutionizing Tight Reservoir Production: A Novel Dual-Medium Unsteady Seepage Model for Optimizing Volumetrically Fractured Horizontal Wells

by Xinyu Zhao1,2,*, Mofeng Li2, Kai Yan2, Li Yin3

1 School of Geosciences, Yangtze University, Wuhan, 430100, China
2 Downhole Service Company, Petro China Qinghai Oilfield Company, Haixi, 817000, China
3 Drilling and Production Technology Research Institute, Petro China Qinghai Oilfield Company, Haixi, 817000, China

* Corresponding Author: Xinyu Zhao. Email: email

Energy Engineering 2023, 120(12), 2933-2949. https://doi.org/10.32604/ee.2023.041580

Abstract

This study presents an avant-garde approach for predicting and optimizing production in tight reservoirs, employing a dual-medium unsteady seepage model specifically fashioned for volumetrically fractured horizontal wells. Traditional models often fail to fully capture the complex dynamics associated with these unconventional reservoirs. In a significant departure from these models, our approach incorporates an initiation pressure gradient and a discrete fracture seepage network, providing a more realistic representation of the seepage process. The model also integrates an enhanced fluid-solid interaction, which allows for a more comprehensive understanding of the fluid-structure interactions in the reservoir. This is achieved through the incorporation of improved permeability and stress coupling, leading to more precise predictions of reservoir behavior. The numerical solutions derived fromnite element method, ensuring high accuracy and computational effciency. To ensure the model’s reliability and accuracy, the outcomes were tested against a real-world case, with results demonstrating strong alignment. A key revelation from the study is the significant difference between uncoupled and fully coupled volumetrically fractured horizontal wells, challenging conventional wisdom in the field. Additionally, the study delves into the effects of stress, fracture length, and fracture number on reservoir production, contributing valuable insights for the design and optimization of tight reservoirs. The findings from this study have the potential to revolutionize the field of tight reservoir prediction and management, offering significant advancements in petroleum engineering. The proposed approach brings forth a more nuanced understanding of tight reservoir systems and opens up new avenues for optimizing reservoir management and production.

Keywords


Cite This Article

APA Style
Zhao, X., Li, M., Yan, K., Yin, L. (2023). Revolutionizing tight reservoir production: A novel dual-medium unsteady seepage model for optimizing volumetrically fractured horizontal wells. Energy Engineering, 120(12), 2933-2949. https://doi.org/10.32604/ee.2023.041580
Vancouver Style
Zhao X, Li M, Yan K, Yin L. Revolutionizing tight reservoir production: A novel dual-medium unsteady seepage model for optimizing volumetrically fractured horizontal wells. Energ Eng. 2023;120(12):2933-2949 https://doi.org/10.32604/ee.2023.041580
IEEE Style
X. Zhao, M. Li, K. Yan, and L. Yin, “Revolutionizing Tight Reservoir Production: A Novel Dual-Medium Unsteady Seepage Model for Optimizing Volumetrically Fractured Horizontal Wells,” Energ. Eng., vol. 120, no. 12, pp. 2933-2949, 2023. https://doi.org/10.32604/ee.2023.041580



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 874

    View

  • 401

    Download

  • 0

    Like

Share Link