Open Access
ARTICLE
Improved Thermophysical Properties of Developed Ternary Nitrate-Based Phase Change Material Incorporated with MXene as Novel Nanocomposites
1 Faculty of Mechanical & Automotive Engineering Technology, Universiti Malaysia Pahang, Pekan, Pahang, 26600, Malaysia
2 Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia
3 College of Engineering, Universiti Malaysia Pahang, Gambang, Pahang, 26300, Malaysia
4 Research Centre for Nano-Materials and Energy Technology, School of Engineering and Technology, Sunway University, Petaling Jaya, 47500, Malaysia
5 Department of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
* Corresponding Author: K. Kadirgama. Email:
(This article belongs to the Special Issue: Advanced Materials and Technologies for Sustainable Energy)
Energy Engineering 2021, 118(5), 1253-1265. https://doi.org/10.32604/EE.2021.016087
Received 05 February 2021; Accepted 10 June 2021; Issue published 16 July 2021
Abstract
In this study, nanocomposite of ternary nitrate molten salt induced with MXene is developed. LiNO3-NaNO3-KNO3 with wt% of 35:12:53 and 35:10:55 are produced and doped with MXene in the wt% of 0.2, 0.5, 1.0, and 1.5. FTIR result indicates the composites had no chemical reaction occurred during the preparation. UV-VIS analysis shows the absorption enhancement with respect to the concentration of MXene. Thermogravimetric analysis (TGA) was used to measure the thermal stability of the LiNO3-NaNO3-KNO3 induced with MXene. The ternary molten salts were stable at temperature range of 600–700°C. Thermal stability increases with the addition of MXene. 1.5 wt% of MXene doped with LiNO3-NaNO3-KNO3 with wt% 35:10:55 and 35:12:53, increases the thermal stability from 652.13°C to 731.49°C and from 679.82°C to 684.57°C, respectively. Using thermophysically enhanced molten salt will increase the efficiency of CSP.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.