Home / Journals / ENERGY / Vol.118, No.5, 2021
  • Open AccessOpen Access

    ARTICLE

    Development of Advanced Biomass Cookstove and Performance Comparisons Using the Modified Star Rating Methodology

    Himanshu1, Kunwar Pal2, Sanjeev Jain3, S. K. Tyagi1,*
    Energy Engineering, Vol.118, No.5, pp. 1237-1251, 2021, DOI:10.32604/EE.2021.016489
    Abstract A disruptive approach to a fundamental process has been applied in a biomass combustion device with two variable speed fans to supply air for gasification and another for combustion processes, separately. Besides, the preheating of secondary air, required for combustion process was also ensured through annulus chamber before being fed into the combustion chamber. The turbulent flow and homogenous mixing were also ensured by controlling the flow rate resulting in the reduced emissions of carbon monoxide (CO) and fine particulate matter (PM 2.5, particulate matter having aerodynamic diameter <2.5 micron). The design approach applied here has also ensured the homogeneous… More >

  • Open AccessOpen Access

    ARTICLE

    Improved Thermophysical Properties of Developed Ternary Nitrate-Based Phase Change Material Incorporated with MXene as Novel Nanocomposites

    I. Samylingam1, Navid Aslfattahi2, K. Kadirgama1,*, Mahendran Samykano3, L. Samylingam4, R. Saidur4,5
    Energy Engineering, Vol.118, No.5, pp. 1253-1265, 2021, DOI:10.32604/EE.2021.016087
    (This article belongs to this Special Issue: Advanced Materials and Technologies for Sustainable Energy)
    Abstract In this study, nanocomposite of ternary nitrate molten salt induced with MXene is developed. LiNO3-NaNO3-KNO3 with wt% of 35:12:53 and 35:10:55 are produced and doped with MXene in the wt% of 0.2, 0.5, 1.0, and 1.5. FTIR result indicates the composites had no chemical reaction occurred during the preparation. UV-VIS analysis shows the absorption enhancement with respect to the concentration of MXene. Thermogravimetric analysis (TGA) was used to measure the thermal stability of the LiNO3-NaNO3-KNO3 induced with MXene. The ternary molten salts were stable at temperature range of 600–700°C. Thermal stability increases with the addition of MXene. 1.5 wt% of… More >

  • Open AccessOpen Access

    ARTICLE

    Impacts of Torrefaction on PM10 Emissions from Biomass Combustion

    Zihao Wang, Dunxi Yu*, Jingkun Han, Jianqun Wu
    Energy Engineering, Vol.118, No.5, pp. 1267-1276, 2021, DOI:10.32604/EE.2021.016107
    (This article belongs to this Special Issue: Advancement of Understanding of PM2.5 and Hg Emissions and Their Control Technologies for Cleaner Combustion)
    Abstract Typical biomass torrefaction is a mild pyrolysis process under conditions of ordinary pressure, low temperature (200–300°C) and inert atmosphere. Torrefaction is considered to be a competitive technology for biomass pretreatment, but its impacts on the emissions of particulate matter from biomass combustion are worthy of further study. In this paper, three kinds of biomass, i.e., bagasse, wheat straw and sawdust were selected for torrefaction pretreatment and the impacts of torrefaction on the emission characteristics of PM10 from biomass combustion were investigated. The combustion experiments were carried out on a drop tube furnace. The combustion-generated particulate and bulk ash samples were… More >

  • Open AccessOpen Access

    ARTICLE

    An Experimental Study on Oxidized Mercury Adsorption by Bromide Blended Coal Combustion Fly Ash

    Mingyu Yu1, Mengyuan Liu1, Guangqian Luo1,2,*, Ruize Sun1, Jingyuan Hu1, Hailu Zhu1, Li Zhong3, Lipeng Han3, Xian Li1, Hong Yao1
    Energy Engineering, Vol.118, No.5, pp. 1277-1286, 2021, DOI:10.32604/EE.2021.014810
    Abstract The application of forced mercury oxidation technology would lead to an increase of Hg2+ concentration in the flue gas. Although Hg2+ can be easily removed in the WFGD, the mercury re-emission in the WFGD can decrease the total removal of mercury from coal-fired power plants. Hence, it is necessary to control Hg2+ concentration in the devices before the WFGD. Fly ash adsorbent is considered as a potential alternative for commercial activated carbon adsorbent. However, the adsorption efficiency of the original fly ash is low. Modification procedure is needed to enhance the adsorption performance. In this study, the adsorption of Hg2+More >

  • Open AccessOpen Access

    ARTICLE

    Improving Functionality of 2DOF Piezoelectric Cantilever for Broadband Vibration Energy Harvesting Using Magnets

    Junxiang Jiang1,2, Shaogang Liu1,*, Lifeng Feng3
    Energy Engineering, Vol.118, No.5, pp. 1287-1303, 2021, DOI:10.32604/EE.2021.015354
    Abstract This paper presents a 2DOF nonlinear piezoelectric energy harvester for improving the efficiency of energy harvesting in low frequency range. The device consisted of an L-shaped piezoelectric cantilever with a magnet at the tip of the first beam and two external magnets on the pedestal. The distance between the magnets which generated nonlinear magnetic attraction was adjusted such that the system can exhibit monostable or bistable characteristics. First, the model of this piezoelectric energy harvester was established and the dynamic equation was derived based on the magnetic attractive force. Then, the nonlinear dynamic responses of the system subject to harmonic… More >

  • Open AccessOpen Access

    ARTICLE

    Statistical Model for Impact and Energy Absorption of 3D Printed Coconut Wood-PLA

    J. Kananathan1,2, M. Samykano2,*, K. Kadirgama3, D. Ramasamy2, M. M. Rahman2
    Energy Engineering, Vol.118, No.5, pp. 1305-1315, 2021, DOI:10.32604/EE.2021.016131
    (This article belongs to this Special Issue: Advanced Materials and Technologies for Sustainable Energy)
    Abstract Fused deposition modeling (FDM)-3D printing has been the favored technology to build functional components in various industries. The present study investigates infill percentage and infill pattern effects on the printed parts’ impact properties through the 3D printing technique using coconut wood-filled PLA composites. Mathematical models are also proposed in the present study with the aim for future property prediction. According to the ASTM standard, fifteen specimens with different parameter combinations were printed using a low-cost FDM 3D printer to evaluate their impact properties. Statistical analysis was performed using MINITAB to validate the experimental data and model development. The experimental outcomes… More >

  • Open AccessOpen Access

    ARTICLE

    Evaluation of Thermal Comfort and Energy Usage for an Enclosed Cavity Indifferent Climatic Zones of India

    Vibhushit Gupta1, Shubham K. Verma2, Sanjeev Anand2, Navin Gupta3, Yatheshth Anand1,*
    Energy Engineering, Vol.118, No.5, pp. 1317-1331, 2021, DOI:10.32604/EE.2021.016732
    Abstract The utilization of energy in building sectors comprises 30–40% of the entire global energy consumption. Most of the energy is being utilized for cooling & heating the buildings. These cooling and heating depend on the nature of climate for different places. In this, the detailed analysis of the building envelope across five areas (viz. Srinagar, Jaisalmer, New Delhi, Thiruvananthapuram and Bangalore) representing different climatic zones had been carried out. Simulations are performed for these locations using eQUEST and ANSYS software. Three of the result output from the eQUEST simulation are used to assess the different cases. These outputs are: total… More >

  • Open AccessOpen Access

    ARTICLE

    Behaviours of Multi-Stakeholders under China’s Renewable Portfolio Standards: A Game Theory-Based Analysis

    Bing Wang1,2, Kailei Deng1, Liting He1, Zhenming Sun1,*
    Energy Engineering, Vol.118, No.5, pp. 1333-1351, 2021, DOI:10.32604/EE.2021.014258
    (This article belongs to this Special Issue: Energy Systems Management and Climate Change)
    Abstract China has implemented both quantitative and policy incentives for renewable energy development since 2019 and is currently in the policy transition stage. The implementation of renewable portfolio standards (RPSs) is difficult due to the interests of multiple stakeholders, including power generation enterprises, power grid companies, power users, local governments, and the central government. Based on China’s RPS policy and power system reform documents, this research sorted out the core game decision problems of China’s renewable energy industry and established a conceptual game decision model of the renewable energy industry from the perspective of local governments, power generation enterprises and power… More >

  • Open AccessOpen Access

    ARTICLE

    Assessment of Electricity Productivity in China: Regional Differences and Convergence

    Pinjie Xie1,*, Ying Zhai1, Fan Yang1,2, Zhuowen Mu3, Chao Wang4
    Energy Engineering, Vol.118, No.5, pp. 1353-1374, 2021, DOI:10.32604/EE.2021.014970
    Abstract Electricity productivity is regarded as a major assessment indicator in the design of energy saving policies, given that China has entered a “New Normal” of economic development. In fact, enhancing electricity productivity in an all-round way, as is one of the binding indicators for energy and environmental issues, means that non-growth target of total electric energy consumption in the economic development is feasible. The Gini coefficient, Theil index, and Mean log deviation are utilized to measure regional differences in China’s electricity productivity from 1997 to 2016 in five regions, and conditional β convergence is empirically analyzed with the spatial Durbin… More >

  • Open AccessOpen Access

    ARTICLE

    Optimal Trading Decision-Making of Power Supply Chain under Renewable Portfolio Standards

    Hui Wang, Haocheng Xu*, Wenhui Zhao
    Energy Engineering, Vol.118, No.5, pp. 1375-1394, 2021, DOI:10.32604/EE.2021.014641
    Abstract Under the background of implementing renewable portfolio standards and the ever-improving tradable green certificate scheme, the increasingly environmentally-friendly preference of power users is leading to changes in electricity demand, which, in turn, is driving changes in the decision-making behaviors of various actors in the power supply chain. Based on this, with the goal of pursuing maximum profit, consumer-power-demand functions have been introduced with some consideration of the factors of consumer preference to establish an optimal profit model for each trading subject in non-cooperative states of the power supply chain, under the constraints of meeting renewable energy portfolio standards. Here, the… More >

Per Page:

Share Link

WeChat scan