Open Access iconOpen Access

ARTICLE

Dimensionality Reduction Using Optimized Self-Organized Map Technique for Hyperspectral Image Classification

S. Srinivasan, K. Rajakumar*

School of Computer Science and Engineering, VIT University, Vellore, 632014, India

* Corresponding Author: K. Rajakumar. Email: email

Computer Systems Science and Engineering 2023, 47(2), 2481-2496. https://doi.org/10.32604/csse.2023.040817

Abstract

The high dimensionalhyperspectral image classification is a challenging task due to the spectral feature vectors. The high correlation between these features and the noises greatly affects the classification performances. To overcome this, dimensionality reduction techniques are widely used. Traditional image processing applications recently propose numerous deep learning models. However, in hyperspectral image classification, the features of deep learning models are less explored. Thus, for efficient hyperspectral image classification, a depth-wise convolutional neural network is presented in this research work. To handle the dimensionality issue in the classification process, an optimized self-organized map model is employed using a water strider optimization algorithm. The network parameters of the self-organized map are optimized by the water strider optimization which reduces the dimensionality issues and enhances the classification performances. Standard datasets such as Indian Pines and the University of Pavia (UP) are considered for experimental analysis. Existing dimensionality reduction methods like Enhanced Hybrid-Graph Discriminant Learning (EHGDL), local geometric structure Fisher analysis (LGSFA), Discriminant Hyper-Laplacian projection (DHLP), Group-based tensor model (GBTM), and Lower rank tensor approximation (LRTA) methods are compared with proposed optimized SOM model. Results confirm the superior performance of the proposed model of 98.22% accuracy for the Indian pines dataset and 98.21% accuracy for the University of Pavia dataset over the existing maximum likelihood classifier, and Support vector machine (SVM).


Keywords


Cite This Article

APA Style
Srinivasan, S., Rajakumar, K. (2023). Dimensionality reduction using optimized self-organized map technique for hyperspectral image classification. Computer Systems Science and Engineering, 47(2), 2481-2496. https://doi.org/10.32604/csse.2023.040817
Vancouver Style
Srinivasan S, Rajakumar K. Dimensionality reduction using optimized self-organized map technique for hyperspectral image classification. Comput Syst Sci Eng. 2023;47(2):2481-2496 https://doi.org/10.32604/csse.2023.040817
IEEE Style
S. Srinivasan and K. Rajakumar, “Dimensionality Reduction Using Optimized Self-Organized Map Technique for Hyperspectral Image Classification,” Comput. Syst. Sci. Eng., vol. 47, no. 2, pp. 2481-2496, 2023. https://doi.org/10.32604/csse.2023.040817



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 645

    View

  • 340

    Download

  • 0

    Like

Share Link