Open Access iconOpen Access

ARTICLE

Towards Generating a Practical SUNBURST Attack Dataset for Network Attack Detection

by Ehab AlMasri1, Mouhammd Alkasassbeh1, Amjad Aldweesh2,*

1 Princess Summaya University for Technology, Amman, Jordan
2 College of Computing and IT, Shaqra University, Shaqra, Saudi Arabia

* Corresponding Author: Amjad Aldweesh. Email: email

Computer Systems Science and Engineering 2023, 47(2), 2643-2669. https://doi.org/10.32604/csse.2023.040626

Abstract

Supply chain attacks, exemplified by the SUNBURST attack utilizing SolarWinds Orion updates, pose a growing cybersecurity threat to entities worldwide. However, the need for suitable datasets for detecting and anticipating SUNBURST attacks is a significant challenge. We present a novel dataset collected using a unique network traffic data collection methodology to address this gap. Our study aims to enhance intrusion detection and prevention systems by understanding SUNBURST attack features. We construct realistic attack scenarios by combining relevant data and attack indicators. The dataset is validated with the J48 machine learning algorithm, achieving an average F-Measure of 87.7%. Our significant contribution is the practical SUNBURST attack dataset, enabling better prevention and mitigation strategies. It is a valuable resource for researchers and practitioners to enhance supply chain attack defenses. In conclusion, our research provides a concise and focused SUNBURST attack dataset, facilitating improved intrusion detection and prevention systems.

Keywords


Cite This Article

APA Style
AlMasri, E., Alkasassbeh, M., Aldweesh, A. (2023). Towards generating a practical SUNBURST attack dataset for network attack detection. Computer Systems Science and Engineering, 47(2), 2643-2669. https://doi.org/10.32604/csse.2023.040626
Vancouver Style
AlMasri E, Alkasassbeh M, Aldweesh A. Towards generating a practical SUNBURST attack dataset for network attack detection. Comput Syst Sci Eng. 2023;47(2):2643-2669 https://doi.org/10.32604/csse.2023.040626
IEEE Style
E. AlMasri, M. Alkasassbeh, and A. Aldweesh, “Towards Generating a Practical SUNBURST Attack Dataset for Network Attack Detection,” Comput. Syst. Sci. Eng., vol. 47, no. 2, pp. 2643-2669, 2023. https://doi.org/10.32604/csse.2023.040626



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 914

    View

  • 429

    Download

  • 1

    Like

Share Link