Open Access iconOpen Access

ARTICLE

crossmark

AI Method for Improving Crop Yield Prediction Accuracy Using ANN

T. Sivaranjani1,*, S. P. Vimal2

1 Department of Electrical and Electronics Engineering, V.S.B College of Engineering Technical Campus, Coimbatore, 642109, India
2 Department of Electronics and Communication Engineering, Sri Ramakrishna Engineering College, Coimbatore, 641022, India

* Corresponding Author: T. Sivaranjani. Email: email

Computer Systems Science and Engineering 2023, 47(1), 153-170. https://doi.org/10.32604/csse.2023.036724

Abstract

Crop Yield Prediction (CYP) is critical to world food production. Food safety is a top priority for policymakers. They rely on reliable CYP to make import and export decisions that must be fulfilled before launching an agricultural business. Crop Yield (CY) is a complex variable influenced by multiple factors, including genotype, environment, and their interactions. CYP is a significant agrarian issue. However, CYP is the main task due to many composite factors, such as climatic conditions and soil characteristics. Machine Learning (ML) is a powerful tool for supporting CYP decisions, including decision support on which crops to grow in a specific season. Generally, Artificial Neural Networks (ANN) are usually used to predict the behaviour of complex non-linear models. As a result, this research paper attempts to determine the correlations between climatic variables, soil nutrients, and CY with the available data. In ANN, three methods, Levenberg-Marquardt (LM), Bayesian regularisation (BR), and scaled conjugate gradient (SCG), are used to train the neural network (NN) model and then compared to determine prediction accuracy. The performance measures of the training, as declared above, such as Mean Squared Error (MSE) and correlation coefficient (R), were determined to assess the ANN models that had been built. The experimental study proves that LM training algorithms are better, while BR and SCG have minimal performance.

Keywords


Cite This Article

APA Style
Sivaranjani, T., Vimal, S.P. (2023). AI method for improving crop yield prediction accuracy using ANN. Computer Systems Science and Engineering, 47(1), 153-170. https://doi.org/10.32604/csse.2023.036724
Vancouver Style
Sivaranjani T, Vimal SP. AI method for improving crop yield prediction accuracy using ANN. Comput Syst Sci Eng. 2023;47(1):153-170 https://doi.org/10.32604/csse.2023.036724
IEEE Style
T. Sivaranjani and S.P. Vimal, “AI Method for Improving Crop Yield Prediction Accuracy Using ANN,” Comput. Syst. Sci. Eng., vol. 47, no. 1, pp. 153-170, 2023. https://doi.org/10.32604/csse.2023.036724



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 844

    View

  • 504

    Download

  • 0

    Like

Share Link