Open Access iconOpen Access

ARTICLE

crossmark

AlertInsight: Mining Multiple Correlation For Alert Reduction

Mingguang Yu1,2, Xia Zhang1,2,*

1 School of Computer Science and Engineering, Northeastern University, Shenyang, 110169, China
2 Neusoft Corporation, Shenyang, 110179, China

* Corresponding Author: Xia Zhang. Email: email

Computer Systems Science and Engineering 2023, 46(2), 2447-2469. https://doi.org/10.32604/csse.2023.037506

Abstract

Modern cloud services are monitored by numerous multidomain and multivendor monitoring tools, which generate massive numbers of alerts and events that are not actionable. These alerts usually carry isolated messages that are missing service contexts. Administrators become inundated with tickets caused by such alert events when they are routed directly to incident management systems. Noisy alerts increase the risk of crucial warnings going undetected and leading to service outages. One of the feasible ways to cope with the above problems involves revealing the correlations behind a large number of alerts and then aggregating the related alerts according to their correlations. Based on these guidelines, AlertInsight, a framework for alert event reduction, is proposed in this paper. In AlertInsight, the correlations among event sources are found by mining a sequence of historical events. Then, event correlation knowledge is employed to build an online detector targeting the correlated events that are hidden in the event stream. Finally, the correlated events are aggregated into a single high-level event for alert reduction. Because of the weaknesses of the commonly used pairwise correlation analysis methods in complex environments, an innovative approach for multiple correlation mining, which overcomes computational complexity challenges by scanning panoramic views of historical episodes from the perspective of holism, is proposed in this paper. In addition, a neural network-based correlated event detector that can learn the event correlation knowledge generated from correlation mining and then detect the correlated events in a sequence online is proposed. Experiments are conducted to test the effectiveness of AlertInsight. The experimental results (precision = 0.92, recall = 0.93, and F1-score = 0.93) demonstrate the performance of AlertInsight for the recognition of multiple correlated alerts and its competence for alert reduction.

Keywords


Cite This Article

APA Style
Yu, M., Zhang, X. (2023). Alertinsight: mining multiple correlation for alert reduction. Computer Systems Science and Engineering, 46(2), 2447-2469. https://doi.org/10.32604/csse.2023.037506
Vancouver Style
Yu M, Zhang X. Alertinsight: mining multiple correlation for alert reduction. Comput Syst Sci Eng. 2023;46(2):2447-2469 https://doi.org/10.32604/csse.2023.037506
IEEE Style
M. Yu and X. Zhang, “AlertInsight: Mining Multiple Correlation For Alert Reduction,” Comput. Syst. Sci. Eng., vol. 46, no. 2, pp. 2447-2469, 2023. https://doi.org/10.32604/csse.2023.037506



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 856

    View

  • 437

    Download

  • 1

    Like

Share Link