Open Access iconOpen Access

ARTICLE

crossmark

An Unsupervised Writer Identification Based on Generating Clusterable Embeddings

M. F. Mridha1, Zabir Mohammad2, Muhammad Mohsin Kabir2, Aklima Akter Lima2, Sujoy Chandra Das2, Md Rashedul Islam3,*, Yutaka Watanobe4

1 Department of Computer Science and Engineering, American International University Bangladesh, Dhaka, 1229, Bangladesh
2 Department of Computer Science & Engineering, Bangladesh University of Business & Technology, Dhaka, 1216, Bangladesh
3 Department of Computer Science and Engineering, University of Asia Pacific, Dhaka, 1216, Bangladesh
4 Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu, 965-8580, Japan

* Corresponding Author: Md Rashedul Islam. Email: email

Computer Systems Science and Engineering 2023, 46(2), 2059-2073. https://doi.org/10.32604/csse.2023.032977

Abstract

The writer identification system identifies individuals based on their handwriting is a frequent topic in biometric authentication and verification systems. Due to its importance, numerous studies have been conducted in various languages. Researchers have established several learning methods for writer identification including supervised and unsupervised learning. However, supervised methods require a large amount of annotation data, which is impossible in most scenarios. On the other hand, unsupervised writer identification methods may be limited and dependent on feature extraction that cannot provide the proper objectives to the architecture and be misinterpreted. This paper introduces an unsupervised writer identification system that analyzes the data and recognizes the writer based on the inter-feature relations of the data to resolve the uncertainty of the features. A pairwise architecture-based Autoembedder was applied to generate clusterable embeddings for handwritten text images. Furthermore, the trained baseline architecture generates the embedding of the data image, and the K-means algorithm is used to distinguish the embedding of individual writers. The proposed model utilized the IAM dataset for the experiment as it is inconsistent with contributions from the authors but is easily accessible for writer identification tasks. In addition, traditional evaluation metrics are used in the proposed model. Finally, the proposed model is compared with a few unsupervised models, and it outperformed the state-of-the-art deep convolutional architectures in recognizing writers based on unlabeled data.

Keywords


Cite This Article

APA Style
Mridha, M.F., Mohammad, Z., Kabir, M.M., Lima, A.A., Das, S.C. et al. (2023). An unsupervised writer identification based on generating clusterable embeddings. Computer Systems Science and Engineering, 46(2), 2059-2073. https://doi.org/10.32604/csse.2023.032977
Vancouver Style
Mridha MF, Mohammad Z, Kabir MM, Lima AA, Das SC, Islam MR, et al. An unsupervised writer identification based on generating clusterable embeddings. Comput Syst Sci Eng. 2023;46(2):2059-2073 https://doi.org/10.32604/csse.2023.032977
IEEE Style
M.F. Mridha et al., “An Unsupervised Writer Identification Based on Generating Clusterable Embeddings,” Comput. Syst. Sci. Eng., vol. 46, no. 2, pp. 2059-2073, 2023. https://doi.org/10.32604/csse.2023.032977



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1917

    View

  • 644

    Download

  • 0

    Like

Share Link