Open Access iconOpen Access

ARTICLE

crossmark

A Novel Soft Clustering Method for Detection of Exudates

Kittipol Wisaeng*

Mahasarakham Business School, Mahasarakham University, Mahasarakham, 44150, Thailand

* Corresponding Author: Kittipol Wisaeng. Email: email

Computer Systems Science and Engineering 2023, 46(1), 1039-1058. https://doi.org/10.32604/csse.2023.034901

Abstract

One of the earliest indications of diabetes consequence is Diabetic Retinopathy (DR), the main contributor to blindness worldwide. Recent studies have proposed that Exudates (EXs) are the hallmark of DR severity. The present study aims to accurately and automatically detect EXs that are difficult to detect in retinal images in the early stages. An improved Fusion of Histogram–Based Fuzzy C–Means Clustering (FHBFCM) by a New Weight Assignment Scheme (NWAS) and a set of four selected features from stages of pre-processing to evolve the detection method is proposed. The features of DR train the optimal parameter of FHBFCM for detecting EXs diseases through a stepwise enhancement method through the coarse segmentation stage. The histogram-based is applied to find the color intensity in each pixel and performed to accomplish Red, Green, and Blue (RGB) color information. This RGB color information is used as the initial cluster centers for creating the appropriate region and generating the homogeneous regions by Fuzzy C–Means (FCM). Afterward, the best expression of NWAS is used for the delicate detection stage. According to the experiment results, the proposed method successfully detects EXs on the retinal image datasets of DiaretDB0 (Standard Diabetic Retinopathy Database Calibration level 0), DiaretDB1 (Standard Diabetic Retinopathy Database Calibration level 1), and STARE (Structured Analysis of the Retina) with accuracy values of 96.12%, 97.20%, and 93.22%, respectively. As a result, this study proposes a new approach for the early detection of EXs with competitive accuracy and the ability to outperform existing methods by improving the detection quality and perhaps significantly reducing the segmentation of false positives.

Keywords


Cite This Article

APA Style
Wisaeng, K. (2023). A novel soft clustering method for detection of exudates. Computer Systems Science and Engineering, 46(1), 1039-1058. https://doi.org/10.32604/csse.2023.034901
Vancouver Style
Wisaeng K. A novel soft clustering method for detection of exudates. Comput Syst Sci Eng. 2023;46(1):1039-1058 https://doi.org/10.32604/csse.2023.034901
IEEE Style
K. Wisaeng, “A Novel Soft Clustering Method for Detection of Exudates,” Comput. Syst. Sci. Eng., vol. 46, no. 1, pp. 1039-1058, 2023. https://doi.org/10.32604/csse.2023.034901



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 761

    View

  • 462

    Download

  • 0

    Like

Share Link