Open Access iconOpen Access

ARTICLE

crossmark

Logistic Regression with Elliptical Curve Cryptography to Establish Secure IoT

by J. R. Arunkumar1,*, S. Velmurugan2, Balarengadurai Chinnaiah3, G. Charulatha4, M. Ramkumar Prabhu4, A. Prabhu Chakkaravarthy5

1 Department of Information Technology, Sree Vidyanikethan Engineering College (Autonomous), Tirupati, Andhra Pradesh, India
2 Department of Electronics and Communication Engineering, TJS Engineering College, Kavaraipettai, Chennai, Tamil Nadu, India
3 Department of Computer Science and Engineering, Vidyavardhaka College of Engineering, Mysuru, Karnataka, India
4 Department of Electronics and Communication Engineering, Peri Institute of Technology, Chennai, Tamil Nadu, India
5 Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu, India

* Corresponding Author: J. R. Arunkumar. Email: email

Computer Systems Science and Engineering 2023, 45(3), 2635-2645. https://doi.org/10.32604/csse.2023.031605

Abstract

Nowadays, Wireless Sensor Network (WSN) is a modern technology with a wide range of applications and greatly attractive benefits, for example, self-governing, low expenditure on execution and data communication, long-term function, and unsupervised access to the network. The Internet of Things (IoT) is an attractive, exciting paradigm. By applying communication technologies in sensors and supervising features, WSNs have initiated communication between the IoT devices. Though IoT offers access to the highest amount of information collected through WSNs, it leads to privacy management problems. Hence, this paper provides a Logistic Regression machine learning with the Elliptical Curve Cryptography technique (LRECC) to establish a secure IoT structure for preventing, detecting, and mitigating threats. This approach uses the Elliptical Curve Cryptography (ECC) algorithm to generate and distribute security keys. ECC algorithm is a light weight key; thus, it minimizes the routing overhead. Furthermore, the Logistic Regression machine learning technique selects the transmitter based on intelligent results. The main application of this approach is smart cities. This approach provides continuing reliable routing paths with small overheads. In addition, route nodes cooperate with IoT, and it handles the resources proficiently and minimizes the 29.95% delay.

Keywords


Cite This Article

APA Style
Arunkumar, J.R., Velmurugan, S., Chinnaiah, B., Charulatha, G., Ramkumar Prabhu, M. et al. (2023). Logistic regression with elliptical curve cryptography to establish secure iot. Computer Systems Science and Engineering, 45(3), 2635-2645. https://doi.org/10.32604/csse.2023.031605
Vancouver Style
Arunkumar JR, Velmurugan S, Chinnaiah B, Charulatha G, Ramkumar Prabhu M, Prabhu Chakkaravarthy A. Logistic regression with elliptical curve cryptography to establish secure iot. Comput Syst Sci Eng. 2023;45(3):2635-2645 https://doi.org/10.32604/csse.2023.031605
IEEE Style
J. R. Arunkumar, S. Velmurugan, B. Chinnaiah, G. Charulatha, M. Ramkumar Prabhu, and A. Prabhu Chakkaravarthy, “Logistic Regression with Elliptical Curve Cryptography to Establish Secure IoT,” Comput. Syst. Sci. Eng., vol. 45, no. 3, pp. 2635-2645, 2023. https://doi.org/10.32604/csse.2023.031605



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1474

    View

  • 642

    Download

  • 3

    Like

Share Link