Open Access
ARTICLE
Adaptive Partial Task Offloading and Virtual Resource Placement in SDN/NFV-Based Network Softwarization
1 Department of Software Convergence, Soonchunhyang University, Asan, 31538, Korea
2 Department of Computer Software Engineering, Soonchunhyang University, Asan, 31538, Korea
* Corresponding Author: Seokhoon Kim. Email:
Computer Systems Science and Engineering 2023, 45(2), 2141-2154. https://doi.org/10.32604/csse.2023.030984
Received 07 April 2022; Accepted 27 June 2022; Issue published 03 November 2022
Abstract
Edge intelligence brings the deployment of applied deep learning (DL) models in edge computing systems to alleviate the core backbone network congestions. The setup of programmable software-defined networking (SDN) control and elastic virtual computing resources within network functions virtualization (NFV) are cooperative for enhancing the applicability of intelligent edge softwarization. To offer advancement for multi-dimensional model task offloading in edge networks with SDN/NFV-based control softwarization, this study proposes a DL mechanism to recommend the optimal edge node selection with primary features of congestion windows, link delays, and allocatable bandwidth capacities. Adaptive partial task offloading policy considered the DL-based recommendation to modify efficient virtual resource placement for minimizing the completion time and termination drop ratio. The optimization problem of resource placement is tackled by a deep reinforcement learning (DRL)-based policy following the Markov decision process (MDP). The agent observes the state spaces and applies value-maximized action of available computation resources and adjustable resource allocation steps. The reward formulation primarily considers task-required computing resources and action-applied allocation properties. With defined policies of resource determination, the orchestration procedure is configured within each virtual network function (VNF) descriptor using topology and orchestration specification for cloud applications (TOSCA) by specifying the allocated properties. The simulation for the control rule installation is conducted using Mininet and Ryu SDN controller. Average delay and task delivery/drop ratios are used as the key performance metrics.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.