Open Access iconOpen Access

ARTICLE

Detection of COVID-19 and Pneumonia Using Deep Convolutional Neural Network

Md. Saiful Islam, Shuvo Jyoti Das, Md. Riajul Alam Khan, Sifat Momen*, Nabeel Mohammed

Department of Electrical and Computer Engineering, North South University, Plot 15, Block B, Bashundhara, Dhaka, 1229, Bangladesh

* Corresponding Author: Sifat Momen. Email: email

Computer Systems Science and Engineering 2023, 44(1), 519-534. https://doi.org/10.32604/csse.2023.025282

Abstract

COVID-19 has created a panic all around the globe. It is a contagious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), originated from Wuhan in December 2019 and spread quickly all over the world. The healthcare sector of the world is facing great challenges tackling COVID cases. One of the problems many have witnessed is the misdiagnosis of COVID-19 cases with that of healthy and pneumonia cases. In this article, we propose a deep Convolutional Neural Network (CNN) based approach to detect COVID+ (i.e., patients with COVID-19), pneumonia and normal cases, from the chest X-ray images. COVID-19 detection from chest X-ray is suitable considering all aspects in comparison to Reverse Transcription Polymerase Chain Reaction (RT-PCR) and Computed Tomography (CT) scan. Several deep CNN models including VGG16, InceptionV3, DenseNet121, DenseNet201 and InceptionResNetV2 have been adopted in this proposed work. They have been trained individually to make particular predictions. Empirical results demonstrate that DenseNet201 provides overall better performance with accuracy, recall, F1-score and precision of 94.75%, 96%, 95% and 95% respectively. After careful comparison with results available in the literature, we have found to develop models with a higher reliability. All the studies were carried out using a publicly available chest X-ray (CXR) image data-set.

Keywords


Cite This Article

APA Style
Islam, M.S., Das, S.J., Khan, M.R.A., Momen, S., Mohammed, N. (2023). Detection of COVID-19 and pneumonia using deep convolutional neural network. Computer Systems Science and Engineering, 44(1), 519-534. https://doi.org/10.32604/csse.2023.025282
Vancouver Style
Islam MS, Das SJ, Khan MRA, Momen S, Mohammed N. Detection of COVID-19 and pneumonia using deep convolutional neural network. Comput Syst Sci Eng. 2023;44(1):519-534 https://doi.org/10.32604/csse.2023.025282
IEEE Style
M.S. Islam, S.J. Das, M.R.A. Khan, S. Momen, and N. Mohammed, “Detection of COVID-19 and Pneumonia Using Deep Convolutional Neural Network,” Comput. Syst. Sci. Eng., vol. 44, no. 1, pp. 519-534, 2023. https://doi.org/10.32604/csse.2023.025282



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2044

    View

  • 946

    Download

  • 0

    Like

Share Link