Open Access iconOpen Access

ARTICLE

Neural Cryptography with Fog Computing Network for Health Monitoring Using IoMT

G. Ravikumar1, K. Venkatachalam2, Mohammed A. AlZain3, Mehedi Masud4, Mohamed Abouhawwash5,6,*

1 Department of Computer Science and Engineering, Coimbatore Institute of Engineering and Technology, Coimbatore, 641109, India
2 Department of Applied Cybernetics, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic
3 Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
4 Department of Computer Science, College of Computers and Information Technology, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia
5 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
6 Department of Computational Mathematics, Science, and Engineering (CMSE), Michigan State University, East Lansing, MI, 48824, USA

* Corresponding Author: Mohamed Abouhawwash. Email: email

Computer Systems Science and Engineering 2023, 44(1), 945-959. https://doi.org/10.32604/csse.2023.024605

Abstract

Sleep apnea syndrome (SAS) is a breathing disorder while a person is asleep. The traditional method for examining SAS is Polysomnography (PSG). The standard procedure of PSG requires complete overnight observation in a laboratory. PSG typically provides accurate results, but it is expensive and time consuming. However, for people with Sleep apnea (SA), available beds and laboratories are limited. Resultantly, it may produce inaccurate diagnosis. Thus, this paper proposes the Internet of Medical Things (IoMT) framework with a machine learning concept of fully connected neural network (FCNN) with k-nearest neighbor (k-NN) classifier. This paper describes smart monitoring of a patient’s sleeping habit and diagnosis of SA using FCNN-KNN+ average square error (ASE). For diagnosing SA, the Oxygen saturation (SpO2) sensor device is popularly used for monitoring the heart rate and blood oxygen level. This diagnosis information is securely stored in the IoMT fog computing network. Doctors can carefully monitor the SA patient remotely on the basis of sensor values, which are efficiently stored in the fog computing network. The proposed technique takes less than 0.2 s with an accuracy of 95%, which is higher than existing models.

Keywords


Cite This Article

APA Style
Ravikumar, G., Venkatachalam, K., AlZain, M.A., Masud, M., Abouhawwash, M. (2023). Neural cryptography with fog computing network for health monitoring using iomt. Computer Systems Science and Engineering, 44(1), 945-959. https://doi.org/10.32604/csse.2023.024605
Vancouver Style
Ravikumar G, Venkatachalam K, AlZain MA, Masud M, Abouhawwash M. Neural cryptography with fog computing network for health monitoring using iomt. Comput Syst Sci Eng. 2023;44(1):945-959 https://doi.org/10.32604/csse.2023.024605
IEEE Style
G. Ravikumar, K. Venkatachalam, M.A. AlZain, M. Masud, and M. Abouhawwash, “Neural Cryptography with Fog Computing Network for Health Monitoring Using IoMT,” Comput. Syst. Sci. Eng., vol. 44, no. 1, pp. 945-959, 2023. https://doi.org/10.32604/csse.2023.024605



cc Copyright © 2023 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 1373

    View

  • 653

    Download

  • 0

    Like

Share Link