Histogram Matched Chest X-Rays Based Tuberculosis Detection Using CNN
Joe Louis Paul Ignatius1,*, Sasirekha Selvakumar1, Kavin Gabriel Joe Louis Paul2, Aadhithya B. Kailash1, S. Keertivaas1, S. A. J. Akarvin Raja Prajan1
Computer Systems Science and Engineering, Vol.44, No.1, pp. 81-97, 2023, DOI:10.32604/csse.2023.025195
- 01 June 2022
Abstract Tuberculosis (TB) is a severe infection that mostly affects the lungs and kills millions of people’s lives every year. Tuberculosis can be diagnosed using chest X-rays (CXR) and data-driven deep learning (DL) approaches. Because of its better automated feature extraction capability, convolutional neural networks (CNNs) trained on natural images are particularly effective in image categorization. A combination of 3001 normal and 3001 TB CXR images was gathered for this study from different accessible public datasets. Ten different deep CNNs (Resnet50, Resnet101, Resnet152, InceptionV3, VGG16, VGG19, DenseNet121, DenseNet169, DenseNet201, MobileNet) are trained and tested for identifying… More >