Open Access
ARTICLE
Novel Design of UWB Jeans Based Textile Antenna for Body-Centric Communications
1 Department of Electrical and Computer Engineering, North South University, Dhaka, 1229, Bangladesh
2 Department of Computer Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
3 Electronics and Communication Engineering, Cambridge Institute of Technology, Ranchi, India
4 Department of Electronics and Communication Engineering, Brainware Group of Institutions-SDET, Kolkata, India
5 Department of Computer Science, College of Computers and Information Technology, Taif University, Taif, 21944, Saudi Arabia
6 Department of Computer Engineering, College of Computers and Information Technology, Taif University, Taif, 21944, Saudi Arabia
* Corresponding Author: Mohammad Monirujjaman Khan. Email:
(This article belongs to the Special Issue: Emergent Topics in Intelligent Computing and Communication Engineering)
Computer Systems Science and Engineering 2022, 42(3), 1079-1093. https://doi.org/10.32604/csse.2022.022313
Received 03 August 2021; Accepted 18 September 2021; Issue published 08 February 2022
Abstract
This research presents an ultra-wideband (UWB) textile antenna design for body-centric applications. The antenna is printed on a 1 mm thick denim substrate with a 1.7 relative permittivity. The jeans substrate is sandwiched between a partial ground plane and a radiating patch with a Q-shaped slot. The slotted radiating patch is placed above the substrate and measures 27.8 mm × 23.8 mm. In free space, the antenna covers the ultra-wideband spectrum designated by the Federal Communication Commission (FCC). Various parameters of the antenna design were changed for further performance evaluation. Depending on the operating frequency, the antenna's realized gain varied from 2.7 to 5 dB. The antenna achieved high radiation efficiency with an omnidirectional radiation pattern. A parametric study was performed in research on varying antenna substrates and other components of the antenna. The three outermost layers of the human body are used to model a human phantom for on-body simulation. After that, the antenna was placed at five different distances from the phantom. The findings demonstrate that at close distances to the phantom, the antenna's gain and efficiency at lower frequencies are reduced. The antenna's radiation efficiency and gain were much higher at higher frequencies for distances greater than 6 mm. Compared to free space, the antenna's radiation pattern was more omnidirectional, especially at higher frequencies. This antenna is novel, compact and has an ultra wide bandwidth, a maximum of 94.60% radiation efficiency and a 5 dBi gain that will make it a good candidate for body-centric communications.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.