Open Access iconOpen Access

ARTICLE

crossmark

A Novel Post-Quantum Blind Signature for Log System in Blockchain

Gang Xu1,2, Yibo Cao1, Shiyuan Xu1, Ke Xiao1, Xin Liu3, Xiubo Chen4,*, Mianxiong Dong5

1 School of Information Science and Technology, North China University of Technology, Beijing, 100144, China
2 Beijing Key Laboratory of Security and Privacy in Intelligent Transportation, Beijing Jiaotong University, Beijing, 100044, China
3 School of Information Engineering, Inner Mongolia University of Science & Technology, Baotou, 014010, China
4 Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, 100876, China
5 Muroran Institute of Technology, Muroran, 050-8585, Japan

* Corresponding Author: Xiubo Chen. Email: email

Computer Systems Science and Engineering 2022, 41(3), 945-958. https://doi.org/10.32604/csse.2022.022100

Abstract

In recent decades, log system management has been widely studied for data security management. System abnormalities or illegal operations can be found in time by analyzing the log and provide evidence for intrusions. In order to ensure the integrity of the log in the current system, many researchers have designed it based on blockchain. However, the emerging blockchain is facing significant security challenges with the increment of quantum computers. An attacker equipped with a quantum computer can extract the user's private key from the public key to generate a forged signature, destroy the structure of the blockchain, and threaten the security of the log system. Thus, blind signature on the lattice in post-quantum blockchain brings new security features for log systems. In our paper, to address these, firstly, we propose a novel log system based on post-quantum blockchain that can resist quantum computing attacks. Secondly, we utilize a post-quantum blind signature on the lattice to ensure both security and blindness of log system, which makes the privacy of log information to a large extent. Lastly, we enhance the security level of lattice-based blind signature under the random oracle model, and the signature size grows slowly compared with others. We also implement our protocol and conduct an extensive analysis to prove the ideas. The results show that our scheme signature size edges up subtly compared with others with the improvement of security level.

Keywords


Cite This Article

APA Style
Xu, G., Cao, Y., Xu, S., Xiao, K., Liu, X. et al. (2022). A novel post-quantum blind signature for log system in blockchain. Computer Systems Science and Engineering, 41(3), 945-958. https://doi.org/10.32604/csse.2022.022100
Vancouver Style
Xu G, Cao Y, Xu S, Xiao K, Liu X, Chen X, et al. A novel post-quantum blind signature for log system in blockchain. Comput Syst Sci Eng. 2022;41(3):945-958 https://doi.org/10.32604/csse.2022.022100
IEEE Style
G. Xu et al., “A Novel Post-Quantum Blind Signature for Log System in Blockchain,” Comput. Syst. Sci. Eng., vol. 41, no. 3, pp. 945-958, 2022. https://doi.org/10.32604/csse.2022.022100

Citations




cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2657

    View

  • 1286

    Download

  • 2

    Like

Share Link